Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Refinement modal logic

Published: 01 December 2014 Publication History

Abstract

In this paper we present refinement modal logic. A refinement is like a bisimulation, except that from the three relational requirements only 'atoms' and 'back' need to be satisfied. Our logic contains a new operator in addition to the standard box modalities for each agent. The operator acts as a quantifier over the set of all refinements of a given model. As a variation on a bisimulation quantifier, this refinement operator or refinement quantifier can be seen as quantifying over a variable not occurring in the formula bound by it. The logic combines the simplicity of multi-agent modal logic with some powers of monadic second-order quantification. We present a sound and complete axiomatization of multi-agent refinement modal logic. We also present an extension of the logic to the modal µ-calculus, and an axiomatization for the single-agent version of this logic. Examples and applications are also discussed: to software verification and design (the set of agents can also be seen as a set of actions), and to dynamic epistemic logic. We further give detailed results on the complexity of satisfiability, and on succinctness.

References

[1]
P. Aczel, Non-Well-Founded Sets, CSLI Publications, Stanford, CA, 1988.
[2]
R. Alur, T.A. Henzinger, O. Kupferman, Alternating-Time Temporal Logic, 1998.
[3]
Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, Moshe Y. Vardi, Alternating refinement relations, in: International Conference on Concurrency Theory, 1998, pp. 163-178.
[4]
Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, Andrzej Wasowski, 20 years of modal and mixed specifications, Bull. Eur. Assoc. Theor. Comput. Sci., 1 (2008).
[5]
A. Arnold, D. Niwinski, Rudiments of µ-Calculus, North Holland, 2001.
[6]
G. Aucher, Characterizing updates in dynamic epistemic logic, in: Proceedings of Twelfth KR, AAAI Press, 2010.
[7]
G. Aucher, DEL-sequents for regression and epistemic planning, J. Appl. Non-Class. Log., 22 (2012) 337-367.
[8]
P. Balbiani, A. Baltag, H. van Ditmarsch, A. Herzig, T. Hoshi, T. De Lima, 'Knowable' as 'known after an announcement', Rev. Symb. Log., 1 (2008) 305-334.
[9]
A. Baltag, L.S. Moss, S. Solecki, The logic of public announcements, common knowledge, and private suspicions, in: Proc. of 7th TARK, Morgan Kaufmann, 1998, pp. 43-56.
[10]
M. Bilkova, A. Palmigiano, Y. Venema, Proof systems for the coalgebraic cover modality, in: Advances in Modal Logic, College Publications, 2008, pp. 1-21.
[11]
P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press, Cambridge, 2001.
[12]
Laura Bozzelli, Hans P. van Ditmarsch, Sophie Pinchinat, The complexity of one-agent refinement modal logic, in: Lecture Notes in Computer Science, vol. 7519, Springer, 2012, pp. 120-133.
[13]
M. Browne, E. Clarke, O. Grümberg, Characterizing Kripke structures in temporal logic, in: LNCS, vol. 249, Springer, 1987, pp. 256-270.
[14]
E.M. Clarke, E.A. Emerson, Design and verification of synchronization skeletons using branching time temporal logic, in: LNCS, vol. 131, Springer-Verlag, 1981, pp. 52-71.
[15]
G. d'Agostino, M. Hollenberg, Logical questions concerning the µ-calculus: interpolation, Lyndon and Los-Tarski, J. Symb. Log., 65 (2000) 310-332.
[16]
G. d'Agostino, G. Lenzi, An axiomatization of bisimulation quantifiers via the µ-calculus, Theor. Comput. Sci., 338 (2005) 64-95.
[17]
G. d'Agostino, G. Lenzi, A note on bisimulation quantifiers and fixed points over transitive frames, J. Log. Comput., 18 (2008) 601-614.
[18]
P. Economou, Extensions and applications of dynamic epistemic logic, Oxford University, 2010.
[19]
R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi, Reasoning about Knowledge, MIT Press, Cambridge MA, 1995.
[20]
Guillaume Feuillade, Sophie Pinchinat, Modal specifications for the control theory of discrete-event systems, Discrete Event Dyn. Syst., 17 (2007) 181-205.
[21]
K. Fine, Propositional quantifiers in modal logic, Theoria, 36 (1970) 336-346.
[22]
T. French, Bisimulation quantifiers for modal logic, University of Western Australia, 2006.
[23]
T. French, H. van Ditmarsch, Undecidability for arbitrary public announcement logic, in: Proc. of the Seventh Conference, College Publications, London, 2008, pp. 23-42.
[24]
J.D. Gerbrandy, W. Groeneveld, Reasoning about information change, J. Log. Lang. Inf., 6 (1997) 147-169.
[25]
J. Hales, Refinement quantifiers for logics of belief and knowledge, University of Western Australia, 2011.
[26]
J. Hales, Arbitrary action model logic and action model synthesis, in: Proc. of 28th LICS, IEEE, 2013, pp. 253-262.
[27]
J. Hales, T. French, R. Davies, Refinement quantified logics of knowledge, Electron. Notes Theor. Comput. Sci., 278 (2011) 85-98.
[28]
J. Hales, T. French, R. Davies, Refinement quantified logics of knowledge and belief for multiple agents, in: Advances in Modal Logic 9, College Publications, 2012, pp. 317-338.
[29]
D. Harel, D. Kozen, J. Tiuryn, Dynamic Logic, MIT Press, Cambridge MA, 2000.
[30]
D. Janin, I. Walukiewicz, Automata for the modal mu-calculus and related results, in: LNCS, vol. 969, Springer, 1995, pp. 552-562.
[31]
D. Janin, I. Walukiewicz, On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic, in: LNCS, vol. 1119, Springer, 1996, pp. 263-277.
[32]
B. Kooi, Expressivity and completeness for public update logics via reduction axioms, J. Appl. Non-Class. Log., 17 (2007) 231-254.
[33]
O. Kupferman, M. Vardi, P. Wolper, Module checking, Inf. Comput., 164 (2001) 322-344.
[34]
C. Kupke, A. Kurz, Y. Venema, Completeness of the finitary moss logic, in: Advances in Modal Logic 7, College Publications, 2008, pp. 193-217.
[35]
Ralf Küsters, Memoryless determinacy of parity games, in: Automata Logics, and Infinite Games, Springer, 2002, pp. 95-106.
[36]
Kim G. Larsen, Ulrik Nyman, Andrzej Wasowski, Modal I/O automata for interface and product line theories, in: Lecture Notes in Computer Science, vol. 4421, Springer, 2007, pp. 64-79.
[37]
A.R. Lomuscio, M.D. Ryan, An algorithmic approach to knowledge evolution, Artif. Intell. Eng. Des. Anal. Manuf. (AIEDAM), 13 (1998).
[38]
René Mazala, Infinite games, in: Automata Logics, and Infinite Games, 2002, pp. 197-204.
[39]
J.S. Miller, L.S. Moss, The undecidability of iterated modal relativization, Stud. Log., 79 (2005) 373-407.
[40]
C. Morgan, Programming from Specifications, Prentice Hall International, Hempstead, UK, 1994.
[41]
R. Parikh, L.S. Moss, C. Steinsvold, Topology and epistemic logic, in: Handbook of Spatial Logics, Springer Verlag, 2007, pp. 299-341.
[42]
M. Pauly, Logic for social software, University of Amsterdam, 2001.
[43]
J.A. Plaza, Logics of public communications, in: Proc. of the 4th ISMIS, Oak Ridge National Laboratory, 1989, pp. 201-216.
[44]
Jean-Baptiste Raclet, Quotient de spécifications pour la réutilisation de composants, Université de Rennes I, December 2007.
[45]
Jean-Baptiste Raclet, Residual for component specifications, in: Electr. Notes Theor. Comput. Sci., vol. 215, 2008, pp. 93-110.
[46]
Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoit Caillaud, Roberto Passerone, Why are modalities good for interface theories?, in: Proceedings of the 9th International Conference on Application of Concurrency to System Design, IEEE Computer Society Press, 2009, pp. 119-127.
[47]
P. Ramadge, W. Wonham, On the supervisory control of discrete event systems, in: Proc. of the IEEE, 1989, pp. 81-98.
[48]
Stéphane Riedweg, Sophie Pinchinat, Quantified mu-calculus for control synthesis, in: Lecture Notes in Computer Science, vol. 2747, Springer, 2003, pp. 642-651.
[49]
M. Ryan, P.-Y. Schobbens, Agents and roles: refinement in alternating-time temporal logic, in: Revised Papers from the 8th International Workshop on Intelligent Agents VIII, Springer, 2002, pp. 100-114.
[50]
A.P. Sistla, M.Y. Vardi, P. Wolper, The complementation problem for Buchi automata with applications to temporal logic, Theor. Comput. Sci., 49 (1987) 217-237.
[51]
J. Tsitsoklis, On the control of discrete event dynamical systems, Math. Control Signals Syst., 2 (1989) 95-107.
[52]
J. van Benthem, An essay on sabotage and obstruction, in: LNCS, vol. 2605, Springer, 2005, pp. 268-276.
[53]
J. van Benthem, One is a lonely number: on the logic of communication, in: Lecture Notes in Logic, vol. 27, A.K. Peters, 2006, pp. 96-129.
[54]
H. van Ditmarsch, Quantifying notes, in: LNCS, vol. 7456, Springer, 2012, pp. 89-109.
[55]
H. van Ditmarsch, T. French, Simulation and information, in: LNAI, vol. 5605, Springer, 2009, pp. 51-65.
[56]
H. van Ditmarsch, T. French, S. Pinchinat, Future event logic - axioms and complexity, in: Advances in Modal Logic, vol. 8, College Publications, 2010, pp. 77-99.
[57]
H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic epistemic logic, in: Synthese Library, vol. 337, Springer, 2007.
[58]
Y. Venema, Lecture notes on the modal µ-calculus, Draft, 2012.
[59]
I. Walukiewicz, Completeness of Kozen's axiomatisation of the propositional mu-calculus, in: INFCTRL: Information and Computation (Formerly Information and Control), vol. 157, 2000.
[60]
X. Wen, H. Liu, F. Huang, An alternative logic for knowability, in: LNCS, vol. 6953, Springer, 2011, pp. 342-355.
[61]
T. Wilke, CTL + is exponentially more succinct than CTL, in: LNCS, vol. 1738, Springer, 1999, pp. 110-121.
[62]
J. Woodcock, J. Davies, Using Z - Specification, Refinement and Proof, Prentice Hall, 1996.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Information and Computation
Information and Computation  Volume 239, Issue C
December 2014
376 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 December 2014

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media