Preview
Unable to display preview. Download preview PDF.
References
Aiello, Marco, van Benthem, Johan, and Bezhanishvili, Guram (2003). Reasoning about space: the modal way. J. Log. Comput., 13(6):889–920.
Barwise, Jon (1988). Three views of common knowledge. In Vardi, M., editor, Proceedings of the Second Conference on Theoretical Aspects of Reasoning about Knowledge, pages 365–379. Morgan Kaufmann, San Francisco.
Bezhanishvili, Guram, Esakia, Leo, and Gabelaia, David (2005). Some results on modal axiomatization and definability for topological spaces. Studia Logica, 81(3):325–355.
Dabrowski, Andrew, Moss, Lawrence S., and Parikh, Rohit (1996). Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic, 78(1–3):73–110. Papers in honor of the Symposium on Logical Foundations of Computer Science, “Logic at St. Petersburg” (St. Petersburg, 1994).
Davoren, J. M. (1999). Topologies, continuity and bisimulations. Theoretical Informatics and Applications, 33(4/5):357–381.
Davoren, Jen M. and Gore, Rajeev P. (2002). Bimodal logics for reasoning about continuous dynamics. In Advances in Modal Logic (Leipzig, 2000), volume 3, pages 91–111. World Sci. Publishing, River Edge, NJ.
Esakia, Leo (1981). Diagonal construction, Loeb’s formula and Cantor’s scattered spaces. In Logical And Semantical Investigations, pages 128–143. Academy Press, Tbilisi. In Russian.
Esakia, Leo (2001). Weak transitivity—a restitution. Logical Investigations, 8:244–255. In Russian.
Gabelaia, David (2001). Modal definability in topology. Master’s thesis, ILLC, University of Amsterdam.
Georgatos, Konstantinos (1993). Modal Logics for Topological Spaces. PhD thesis, CUNY Graduate Center.
Georgatos, Konstantinos (1994a). Knowledge theoretic properties of topological spaces. In Masuch, Michael and Laszlo, Polos, editors, Knowledge Representation and Uncertainty, Lecture Notes in Comput. Sci. Springer, Berlin.
Georgatos, Konstantinos (1994b). Reasoning about knowledge on computation trees. In Logics in artificial intelligence (York, 1994), volume 838 of Lecture Notes in Comput. Sci., pages 300–315. Springer, Berlin.
Georgatos, Konstantinos (1997). Knowledge on treelike spaces. Studia Logica, 59:271–301.
Heinemann, Bernhard (1997). A topological generalization of propositional linear time temporal logic. In Mathematical Foundations of Computer Science 1997 (Bratislava), volume 1295 of Lecture Notes in Comput. Sci., pages 289–297. Springer, Berlin.
Heinemann, Bernhard (1998). Topological modal logics satisfying finite chain conditions. Notre Dame Journal of Formal Logic, 39(3):406–421.
Heinemann, Bernhard (1999a). The complexity of certain modal formulas on binary ramified subset trees. Fundamenta Informaticae, 39(3):259–272.
Heinemann, Bernhard (1999b). Temporal aspects of the modal logic of subset spaces. Theoret. Comput. Sci., 224(1–2):135–155. Logical foundations of computer science (Yaroslavl, 1997).
Heinemann, Bernhard (2001). Modelling change with the aid of knowledge and time. In Fundamentals of computation theory (Riga, 2001), volume 2138 of Lecture Notes in Comput. Sci., pages 150–161. Springer, Berlin.
Heinemann, Bernhard (2006). Regarding overlaps in “topologic”. In Hodkinson, I. and Venema, Y., editors, Advances in Modal Logic, AiML 2006, Noosa, Queensland, Australia, volume 6. King’s College Publications, London.
Kozen, Dexter and Parikh, Rohit (1981). An elementary proof of the completeness of PDL. Theoretical Computer Science, pages 113–118.
Krommes, G. (2003). A new proof of decidability for the modal logic of subset spaces. In Eighth ESSLLI Student Session, pages 137–148.
Kudinov, Andrey (2006). Topological modal logics with difference modality. In Hodkinson, I. and Venema, Y., editors, Advances in Modal Logic, AiML 2006, Noosa, Queensland, Australia, volume 6. King’s College Publications, London.
McKinsey, J. C. C. (1941). A solution of the decision problem for the lewis systems S2 and S4, with an application to topology. J. Symbolic Logic, 6: 117–134.
McKinsey, J. C. C. and A. Tarski (1944). The algebra of topology. Annals of Mathematics, 45:141–191.
Moss, Lawrence S. and Parikh, Rohit (1992). Topological reasoning and the logic of knowledge. In Moses, Y., editor, Theoretical Aspects of Reasoning About Knowledge, pages 95–105. Morgan Kaufmann.
Pacuit, Eric and Parikh, Rohit (2005). The logic of communication graphs. In Leite, J., Omicini, A., Torroni, P., and Yolum, P., editors, Declarative Agent Languages and Technologies II: Second International Workshop, DALT 2004, volume 3476 of Lecture Notes in Artificial Intelligence. Springer, Berlin.
Shehtman, V. (1990). Derived sets in euclidean spaces and modal logic. Technical Report X-90-05, University of Amsterdam.
Steinsvold, Chris (2006). Topological Models of Belief Logics. PhD thesis, CUNY Graduate Center.
van Benthem, Johan, Bezhanishvili, Guram, ten Cate, Balder, and Sarenac, Darko (2007). Multimodal logics of products of topologies. Studia Logica. to appear.
van Benthem, Johan and Sarenac, Darko (2004). The geometry of knowledge. Technical Report PP-2004-20, ILLC.
Vickers, Steven (1989). Topology via Logic. Cambridge University Press, Cambridge.
Weiss, M. A. (1999). Completeness of Certain Bimodal Logics. PhD thesis, CUNY Graduate Center.
Weiss, M. A. and Parikh, R. (2002). Completeness of certain bimodal logics for subset spaces. Studia Logica, 71(1):1–30.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer
About this chapter
Cite this chapter
Parikh, R., Moss, L., Steinsvold, C. (2007). Topology and Epistemic Logic. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds) Handbook of Spatial Logics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5587-4_6
Download citation
DOI: https://doi.org/10.1007/978-1-4020-5587-4_6
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-5586-7
Online ISBN: 978-1-4020-5587-4
eBook Packages: Humanities, Social Sciences and LawPhilosophy and Religion (R0)