Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Estimating product-choice probabilities from recency and frequency of page views

Published: 01 May 2016 Publication History

Abstract

This paper investigates the relationship between customers' page views (PVs) and the probabilities of their product choices on e-commerce sites. For this purpose, we create a probability table consisting of product-choice probabilities for all recency and frequency combinations of each customers' previous PVs. To reduce the estimation error when there are few training samples, we develop optimization models for estimating the product-choice probabilities that satisfy monotonicity, convexity and concavity constraints with respect to recency and frequency. Computational results demonstrate that our method has clear advantages over logistic regression and kernel-based support vector machine.

References

[1]
M.J. Best, N. Chakravarti, Active set algorithms for isotonic regression; a unifying framework, Math. Program., 47 (1990) 425-439.
[2]
E.G. Boroujerdi, S. Mehri, S.S. Garmaroudi, M. Pezeshki, F.R. Mehrabadi, S. Malakouti, S. Khadivi, A study on prediction of user's tendency toward purchases in websites based on behavior models, 2014.
[3]
S. Boyd, L. Vandenberghe, Cambridge University Press, 2004.
[4]
H.D. Brunk, Maximum likelihood estimates of monotone parameters, Ann. Math. Stat., 26 (1955) 607-616.
[5]
R.E. Bucklin, J.M. Lattin, A. Ansari, S. Gupta, D. Bell, E. Coupey, J.D.C. Little, C. Mela, A. Montgomery, J. Steckel, Choice and the internet: from clickstream to research stream, Mark. Lett., 13 (2002) 245-258.
[6]
R.E. Bucklin, C. Sismeiro, Click here for internet insight: advances in clickstream data analysis in marketing, J. Interact. Mark., 23 (2009) 35-48.
[7]
Z.Y. Chen, Z.P. Fan, Distributed customer behavior prediction using multiplex data: a collaborative MK-SVM approach, Knowl. Based Syst., 35 (2012) 111-119.
[8]
Y.H. Cho, J.K. Kim, Application of web usage mining and product taxonomy to collaborative recommendations in e-commerce, Expert Syst. Appl., 26 (2004) 233-246.
[9]
R.L. Dykstra, An algorithm for restricted least squares regression, J. Am. Stat. Assoc., 78 (1983) 837-842.
[10]
R.L. Dykstra, T. Robertson, An algorithm for isotonic regression for two or more independent variables, Ann. Stat., 10 (1982) 708-716.
[11]
M.D. Ekstrand, J.T. Riedl, J.A. Konstan, Collaborative filtering recommender systems, Found. Trends Hum. Comput. Interact., 4 (2011) 81-173.
[12]
P.S. Fader, B.G. Hardie, K.L. Lee, RFM and CLV: using iso-value curves for customer base analysis, J. Mark. Res., 42 (2005) 415-430.
[13]
P.S. Fader, B.G. Hardie, K.L. Lee, "Counting your customers" the easy way: an alternative to the pareto/NBD model, Mark. Sci., 24 (2005) 275-284.
[14]
C.J. Geyer, Constrained maximum likelihood exemplified by isotonic convex logistic regression, J. Am. Stat. Assoc., 86 (1991) 717-724.
[15]
U. Grenander, On the theory of mortality measurement: part ii, Scand. Actuar. J., 1956 (1956) 125-153.
[16]
C. Hildreth, Point estimates of ordinates of concave functions, J. Am. Stat. Assoc., 49 (1954) 598-619.
[17]
T. Huang, J.A. Van Mieghem, Clickstream data and inventory management: model and empirical analysis, Product. Oper. Manag., 23 (2014) 333-347.
[18]
S.K. Hui, P.S. Fader, E.T. Bradlow, Path data in marketing: an integrative framework and prospectus for model building, Mark. Sci., 28 (2009) 320-335.
[19]
M. Jamalzadeh, Analysis of clickstream data, Doctoral dissertation, Durham University, 2011.
[20]
K. Jerath, P.S. Fader, B.G. Hardie, New perspectives on customer "death" using a generalization of the pareto/NBD model, Mark. Sci., 30 (2011) 866-880.
[21]
Y.S. Kim, B.J. Yum, Recommender system based on click stream data using association rule mining, Expert Syst. Appl., 38 (2011) 13320-13327.
[22]
C.D. Manning, P. Raghavan, H. Schütze, Cambridge: Cambridge University Press, 2008.
[23]
W.L. Maxwell, J.A. Muckstadt, Establishing consistent and realistic reorder intervals in production-distribution systems, Oper. Res., 33 (1985) 1316-1341.
[24]
W.W. Moe, P.S. Fader, Dynamic conversion behavior at e-commerce sites, Manag. Sci., 50 (2004) 326-335.
[25]
W.W. Moe, A field experiment to assess the interruption effect of pop-up promotions, J. Interact. Mark., 20 (2006) 34-44.
[26]
A.L. Montgomery, Applying quantitative marketing techniques to the internet, Interfaces, 31 (2001) 90-108.
[27]
A.L. Montgomery, S. Li, K. Srinivasan, J.C. Liechty, Modeling online browsing and path analysis using clickstream data, Mark. Sci., 23 (2004) 579-595.
[28]
E.W. Ngai, L. Xiu, D.C. Chau, Application of data mining techniques in customer relationship management: a literature review and classification, Expert Syst. Appl., 36 (2009) 2592-2602.
[29]
R. Olbrich, C. Holsing, Modeling consumer purchasing behavior in social shopping communities with clickstream data, Int. J. Electron. Commer., 16 (2011) 15-40.
[30]
P.M. Pardalos, G. Xue, Algorithms for a class of isotonic regression problems, Algorithmica, 23 (1999) 211-222.
[31]
J. Qiu, A predictive model for customer purchase behavior in e-commerce context, 2014.
[32]
W.J. Reinartz, V. Kumar, On the profitability of long-life customers in a noncontractual setting: an empirical investigation and implications for marketing, J. Mark., 64 (2000) 17-35.
[33]
W.J. Reinartz, V. Kumar, The impact of customer relationship characteristics on profitable lifetime duration, J. Mark., 67 (2003) 77-99.
[34]
P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl, Grouplens: an open architecture for collaborative filtering of netnews, 1994.
[35]
F. Ricci, L. Rokach, B. Shapira, P.B. Kantor, New York: Springer, 2011.
[36]
R. Roundy, A 98% effective lot-sizing rule for a multi-product multistage production/inventory system, Math. Oper. Res., 11 (1986) 699-727.
[37]
S. Sato, Y. Asahi, The model of purchasing and visiting behavior of customers in an e-commerce site for consumers, 2012.
[38]
C. Sismeiro, R.E. Bucklin, Modeling purchase behavior at an e-commerce web site: a task-completion approach, J. Mark. Res., 41 (2004) 306-323.
[39]
Q.F. Stout, Isotonic regression for multiple independent variables, Algorithmica, 71 (2013) 450-470.
[40]
E. Turban, D. King, J. Lee, T.-P. Liang, D.C. Turban, Springer, 2015.
[41]
D. Van den Poel, W. Buckinx, Predicting online-purchasing behaviour, Eur. J. Oper. Res., 166 (2005) 557-575.
[42]
J. Wu, A. Rangaswamy, A fuzzy set model of search and consideration with an application to an online market, Mark. Sci., 22 (2003) 411-434.
[43]
Y. Zhang, M. Pennacchiotti, Predicting purchase behaviors from social media, 2013.

Cited By

View all
  • (2019)Customer Purchase Behavior Prediction in E-commerce: A Conceptual Framework and Research AgendaNew Frontiers in Mining Complex Patterns10.1007/978-3-030-48861-1_8(119-136)Online publication date: 16-Sep-2019
  • (2018)A latent-class model for estimating product-choice probabilities from clickstream dataInformation Sciences: an International Journal10.1016/j.ins.2017.11.014429:C(406-420)Online publication date: 1-Mar-2018
  • (2018)Changing perspectivesExpert Systems with Applications: An International Journal10.1016/j.eswa.2017.10.04694:C(137-148)Online publication date: 15-Mar-2018

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Knowledge-Based Systems
Knowledge-Based Systems  Volume 99, Issue C
May 2016
201 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 May 2016

Author Tags

  1. Clickstream data
  2. E-commerce
  3. Frequency
  4. Optimization
  5. Page view
  6. Product choice
  7. Recency

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2019)Customer Purchase Behavior Prediction in E-commerce: A Conceptual Framework and Research AgendaNew Frontiers in Mining Complex Patterns10.1007/978-3-030-48861-1_8(119-136)Online publication date: 16-Sep-2019
  • (2018)A latent-class model for estimating product-choice probabilities from clickstream dataInformation Sciences: an International Journal10.1016/j.ins.2017.11.014429:C(406-420)Online publication date: 1-Mar-2018
  • (2018)Changing perspectivesExpert Systems with Applications: An International Journal10.1016/j.eswa.2017.10.04694:C(137-148)Online publication date: 15-Mar-2018

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media