Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Isotonic Regression for Multiple Independent Variables

Published: 01 February 2015 Publication History

Abstract

This paper gives algorithms for determining isotonic regressions for weighted data at a set of points P in multidimensional space with the standard componentwise ordering. The approach is based on an order-preserving embedding of P into a slightly larger directed acyclic graph (dag) G , where the transitive closure of the ordering on P is represented by paths of length 2 in G . Algorithms are given which, compared to previous results, improve the time by a factor of $\tilde{\varTheta}(|P|)$ for the L 1, L 2, and L metrics. A yet faster algorithm is given for L 1 isotonic regression with unweighted data. L isotonic regression is not unique, and algorithms are given for finding L regressions with desirable properties such as minimizing the number of large regression errors.

References

[1]
Angelov, S., Harb, B., Kannan, S., Wang, L.-S.: Weighted isotonic regression under the L1 norm. In: Symposium on Discrete Algorithms (SODA), pp. 783---791 (2006)
[2]
Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T., Silverman, E.: An empirical distribution function for sampling with incomplete information. Ann. Math. Stat. 5, 641---647 (1955)
[3]
Barlow, R.E., Bartholomew, D.J., Bremner, J.M., Brunk, H.D.: Statistical Inference Under Order Restrictions: the Theory and Application of Isotonic Regression. Wiley, New York (1972)
[4]
Barlow, R.E., Brunk, H.D.: The isotonic regression problem and its dual. J. Am. Stat. Soc. 67, 140---147 (1972)
[5]
Beran, R., Dümbgen, L.: Least squares and shrinkage estimation under bimonotonicity constraints. Stat. Comput. 20, 177---189 (2010)
[6]
Bril, G., Dykstra, R., Pillars, C., Robertson, T.: Algorithm AS 206: isotonic regression in two independent variables. J. R. Stat. Soc., Ser. C, Appl. Stat. 33, 352---357 (1984)
[7]
Burdakov, O., Grimvall, A., Hussian, M.: A generalized PAV algorithm for monotonic regression in several variables. In: Proceedings of COMPSTAT'2004 (2004)
[8]
Chandrasekaran, R., Rhy, Y.U., Jacob, V.S., Hong, S.: Isotonic separation. INFORMS J. Comput. 17, 462---474 (2005)
[9]
Dembczynski, K., Greco, S., Kotlowski, W., Slowinski, R.: Statistical model for rough set approach to multicriteria classification. In: PKDD 2007: 11th European Conference on Principles and Practice Knowledge Discovery in Databases. Springer Lecture Notes in Computer Science, vol. 4702, pp. 164---175 (2007)
[10]
Dette, H., Scheder, R.: Strictly monotone and smooth nonparametric regression for two or more variables. Can. J. Stat. 34, 535---561 (2006)
[11]
Dykstra, R., Hewett, J., Robertson, T.: Nonparametric, isotonic discriminant procedures. Biometrika 86, 429---438 (1999)
[12]
Dykstra, R.L., Robertson, T.: An algorithm for isotonic regression of two or more independent variables. Ann. Stat. 10, 708---716 (1982)
[13]
Gamarnik, D.: Efficient learning of monotone concepts via quadratic optimization. In: Proceedings of Computational Learning Theory (COLT), pp. 134---143 (1998)
[14]
Gebhardt, F.: An algorithm for monotone regression with one or more independent variables. Biometrika 57, 263---271 (1970)
[15]
Gudmundsson, J., Klein, O., Knauer, C., Smid, M.: Small Manhattan networks and algorithmic applications for the earth mover's distance. In: Proceedings 23rd European Workshop on Computational Geometry, pp. 174---177 (2007)
[16]
Hanson, D.L., Pledger, G., Wright, F.T.: On consistency in monotonic regression. Ann. Stat. 1, 401---421 (1973)
[17]
Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm. BIT Numer. Math. 32, 249---267 (1992)
[18]
Jackson, D.: Note on the median of a set of numbers. Bull. Am. Math. Soc., pp. 160---164 (1921)
[19]
Kalai, A.T., Sastry, R.: The isotron algorithm: high-dimensional isotonic regression. In: Proceedings of Computational Learning Theory (COLT) (2009)
[20]
Kaufman, Y., Tamir, A.: Locating service centers with precedence constraints. Discrete Appl. Math. 47, 251---261 (1993)
[21]
Legg, D., Townsend, D.: Best monotone approximation in L'{0, 1}. J. Approx. Theory 42, 30---35 (1984)
[22]
Luss, R., Rosset, S., Shahar, M.: Decomposing isotonic regression for efficiently solving large problems, In: Proceedings of Neural Information Processing Systems (2010)
[23]
Maxwell, W.L., Muckstadt, J.A.: Establishing consistent and realistic reorder intervals in production-distribution systems. Oper. Res. 33, 1316---1341 (1985)
[24]
Megido, N.: Linear-time algorithms for linear programming in ¿3 and related problems. SIAM J. Comput. 12, 759---776 (1983)
[25]
Meyer, M.: Inference for multiple isotonic regression (2010). www.stat.colostate.edu/research/TechnicalReports/2010/2010_2.pdf
[26]
Moon, T., Smola, A., Chang, Y., Zheng, Z.: IntervalRank--isotonic regression with listwise and pairwise constraints. In: Proceedings Web Search and Data Mining, pp. 151---160 (2010)
[27]
Mukarjee, H., Stern, S.: Feasible nonparametric estimation of multiargument monotone functions. J. Am. Stat. Assoc. 89, 77---80 (1994)
[28]
Pólya, G.: Sur une algorithme toujours convergent pour obtenir les polynomes de meillure approximation de Tchebycheff pour un fonction continue quelconque. Comptes Rendus 157, 840---843 (1913)
[29]
Punera, K., Ghosh, J.: Enhanced hierarchical classification via isotonic smoothing. In: Proceedings International Conference on the World Wide Web, pp. 151---160 (2008)
[30]
Qian, S., Eddy, W.F.: An algorithm for isotonic regression on ordered rectangular grids. J. Comput. Graph. Stat. 5, 225---235 (1996)
[31]
Robertson, T., Wright, F.T.: Multiple isotonic median regression. Ann. Stat. 1, 422---432 (1973)
[32]
Robertson, T., Wright, F.T., Dykstra, R.L.: Order Restricted Statistical Inference. Wiley, New York (1988)
[33]
Saarela, O., Arjas, E.: A method for Bayesian monotonic multiple regression. Scand. J. Stat. 38, 499---513 (2011)
[34]
Salanti, G., Ulm, K.: Multidimensional isotonic regression and estimation of the threshold value. Discussion paper 234. Institute für Statistik, Ludwig-Maximilians Universität, Munchen (2001)
[35]
Sasabuchi, S., Inutsuka, M., Kulatungaz, D.D.S.: A multivariate version of isotonic regression. Biometrika 70, 465---472 (1983)
[36]
Spouge, J., Wan, H., Wilber, W.J.: Least squares isotonic regression in two dimensions. J. Optim. Theory Appl. 117, 585---605 (2003)
[37]
Stout, Q.F.: Strict L' isotonic regression. J. Optim. Theory Appl. 152, 121---135 (2012)
[38]
Stout, Q.F.: Weighted L' isotonic regression, submitted (2012). Available at. www.eecs.umich.edu/~qstout/pap/LinfinityIso.pdf
[39]
Stout, Q.F.: Isotonic regression via partitioning. Algorithmica 66, 93---112 (2013)
[40]
Sysoev, O., Burdakov, O., Grimvall, A.: A segmentation-based algorithm for large-scale partially ordered monotonic regression. Comput. Stat. Data Anal. 55, 2463---2476 (2011)
[41]
Ubhaya, V.A.: Isotone optimization, I, II. J. Approx. Theory 12, 146---159, 315---331 (1974)
[42]
Velikova, M., Daniels, H.: Monotone Prediction Models in Data Mining. VDM Verlag (2008)

Cited By

View all
  • (2022)Comparing optimistic and pessimistic constraint evaluation in shape-constrained symbolic regressionProceedings of the Genetic and Evolutionary Computation Conference10.1145/3512290.3528714(938-945)Online publication date: 8-Jul-2022
  • (2019)Estimating product-choice probabilities from recency and frequency of page viewsKnowledge-Based Systems10.1016/j.knosys.2016.02.00699:C(157-167)Online publication date: 1-Jan-2019
  • (2019)A constrained regression model for an ordinal response with ordinal predictorsStatistics and Computing10.1007/s11222-018-9842-229:5(869-890)Online publication date: 1-Sep-2019
  • Show More Cited By
  1. Isotonic Regression for Multiple Independent Variables

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Algorithmica
    Algorithmica  Volume 71, Issue 2
    February 2015
    306 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 February 2015

    Author Tags

    1. Isotonic regression algorithm
    2. Monotonic
    3. Multidimensional ordering
    4. Transitive closure

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 07 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Comparing optimistic and pessimistic constraint evaluation in shape-constrained symbolic regressionProceedings of the Genetic and Evolutionary Computation Conference10.1145/3512290.3528714(938-945)Online publication date: 8-Jul-2022
    • (2019)Estimating product-choice probabilities from recency and frequency of page viewsKnowledge-Based Systems10.1016/j.knosys.2016.02.00699:C(157-167)Online publication date: 1-Jan-2019
    • (2019)A constrained regression model for an ordinal response with ordinal predictorsStatistics and Computing10.1007/s11222-018-9842-229:5(869-890)Online publication date: 1-Sep-2019
    • (2017)A Dual Active-Set Algorithm for Regularized Monotonic RegressionJournal of Optimization Theory and Applications10.1007/s10957-017-1060-0172:3(929-949)Online publication date: 1-Mar-2017
    • (2015)Fast, provable algorithms for Isotonic regression in all ℓ--normsProceedings of the 29th International Conference on Neural Information Processing Systems - Volume 210.5555/2969442.2969543(2719-2727)Online publication date: 7-Dec-2015

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media