Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Unsupervised neural networks as a support tool for pathology diagnosis in MALDI-MSI experiments: : A case study on thyroid biopsies

Published: 01 April 2023 Publication History

Abstract

Artificial intelligence is getting a foothold in medicine for disease screening and diagnosis. While typical machine learning methods require large labeled datasets for training and validation, their application is limited in clinical fields since ground truth information can hardly be obtained on a sizeable cohort of patients. Unsupervised neural networks – such as Self-Organizing Maps (SOMs) – represent an alternative approach to identifying hidden patterns in biomedical data. Here we investigate the feasibility of SOMs for the identification of malignant and non-malignant regions in liquid biopsies of thyroid nodules, on a patient-specific basis. MALDI-ToF (Matrix Assisted Laser Desorption Ionization - Time of Flight) mass spectrometry-imaging (MSI) was used to measure the spectral profile of bioptic samples. SOMs were then applied for the analysis of MALDI-MSI data of individual patients’ samples, also testing various pre-processing and agglomerative clustering methods to investigate their impact on SOMs’ discrimination efficacy. The final clustering was compared against the sample’s probability to be malignant, hyperplastic or related to Hashimoto thyroiditis as quantified by multinomial regression with LASSO. Our results show that SOMs are effective in separating the areas of a sample containing benign cells from those containing malignant cells. Moreover, they allow to overlap the different areas of cytological glass slides with the corresponding proteomic profile image, and inspect the specific weight of every cellular component in bioptic samples. We envision that this approach could represent an effective means to assist pathologists in diagnostic tasks, avoiding the need to manually annotate cytological images and the effort in creating labeled datasets.

Highlights

Application of unsupervised learning for automated clustering of spectra profiles.
Methodology to identify morphological regions of interest in a bioptic sample.
Methodology tested on a case study regarding mass spectra data from thyroid nodules.
Comparison to supervised learning shows effectiveness in separating regions.
Effective tool to assist pathologists by avoiding the need for manual annotation.

References

[1]
Akinduko A.A., Mirkes E.M., Gorban A.N., SOM: Stochastic initialization versus principal components, Information Science 364 (2016) 213–221,.
[2]
Amann J., Vetter D., Blomberg S.N., Christensen H.C., Coffee M., Gerke S., et al., To explain or not to explain?– artificial intelligence explainability in clinical decision support systems, PLOS Digital Health 1 (2022),.
[3]
Asan U., Ercan S., An introduction to self-organizing maps, Computational Intelligence Systems in Industrial Engineering (2012) 295–315.
[4]
Attik M., Bougrain L., Alexandre F., Self-organizing map initialization, International Conference on Artificial Neural Networks (2005) 357–362,.
[5]
Barbalho J., Costa J., Neto A., Netto M., Hierarchical and dynamic SOM applied to image compression, in: Proceedings of the international joint conference on neural networks, vol. 1, IEEE, 2003, pp. 753–758.
[6]
Bergstra J., Komer B., Eliasmith C., Yamins D., Cox D.D., Hyperopt: a Python library for model selection and hyperparameter optimization, Computer Science Discoveries 8 (2015).
[7]
Borkowska E.M., Kruk A., Jedrzejczyk A., Rozniecki M., Jablonowski Z., Traczyk M., et al., Molecular subtyping of bladder cancer using Kohonen self-organizing maps, Cancer Medicine 3 (2014) 1225–1234,.
[8]
Canini V., Leni D., Pincelli A.I., Scardilli M., Garancini M., Villa C., et al., Clinical-pathological issues in thyroid pathology: study on the routine application of NIFTP diagnostic criteria, Science Reports 9 (2019),.
[9]
Capitoli G., Piga I., Clerici F., Brambilla V., Mahajneh A., Leni D., et al., Analysis of Hashimoto’s thyroiditis on fine needle aspiration samples by MALDI-Imaging, Biochimica et Biophysica ACTA (BBA) - Proteins and Proteom 1868 (2020).
[10]
Capitoli G., Piga I., Galimberti S., Leni D., Pincelli A.I., Garancini M., et al., MALDI-MSI as a Complementary Diagnostic Tool in Cytopathology: A Pilot Study for the Characterization of Thyroid Nodules, Cancers 11 (1377) (2019),.
[11]
Capitoli G., Piga I., L’Imperio V., Clerici F., Leni D., Garancini M., et al., Cytomolecular classification of thyroid nodules using fine-needle washes aspiration biopsies, International Journal of Molecular Sciences 23 (2022),.
[12]
Cordes J., Enzlein T., Marsching C., Hinze M., Engelhardt S., Hopf C., et al., M2aia–interactive, fast, and memory-efficient analysis of 2D and 3D multi-modal mass spectrometry imaging data, GigaScience 10 (2021),. giab049.
[13]
Datta S., DePadilla L.M., Feature selection and machine learning with mass spectrometry data for distinguishing cancer and non-cancer samples, Statistical Methodology 3 (2006) 79–92,.
[14]
DeHoog R.J., Zhang J., Alore E., Lin J.Q., Yu W., Woody S., et al., Preoperative metabolic classification of thyroid nodules using mass spectrometry imaging of fine-needle aspiration biopsies, Proceedings of the National Academy of Sciences 116 (2019) 21401–21408,.
[15]
Deininger S.-O., Ebert M.P., Futterer A., Gerhard M., Rocken C., MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers, Journal of Proteome Research 7 (2008) 5230–5236,.
[16]
Esteva A., Robicquet A., Ramsundar B., Kuleshov V., DePristo M., Chou K., et al., A guide to deep learning in healthcare, Nature Medicine 25 (2019) 24–29,.
[17]
Friedman J., Hastie T., Tibshirani R., Regularization paths for generalized linear models via coordinate descent, Journal of Statistical Software 33 (2010) 1–22,.
[18]
Gibb S., Strimmer K., MALDIquant: A versatile R package for the analysis of mass spectrometry data, Bioinform 28 (2270–2271) (2012),.
[19]
Günter S., Bunke H., Self-organizing map for clustering in the graph domain, Pattern Recognition Letters 23 (2002) 405–417,.
[20]
Hautaniemi S., Yli-Harja O., Astola J., Kauraniemi P., Kallioniemi A., Wolf M., et al., Analysis and visualization of gene expression microarray data in human cancer using self-organizing maps, Machine Learning 52 (2003) 45–66,.
[21]
Henson D., Spenceley S.E., Bull D., Artificial neural network analysis of noisy visual field data in glaucoma, Artificial Intelligence in Medicine 10 (1997) 99–113,.
[22]
Kohonen T., Self-organizing maps, vol. 30, Springer Science & Business Media, 2012.
[23]
Kurczyk A., Gawin M., Chekan M., Wilk A., Łakomiec K., Mrukwa G., et al., Classification of thyroid tumors based on mass spectrometry imaging of tissue microarrays; a single-pixel approach, Journal of Molecular Science 21 (6289) (2020),.
[24]
Markey M.K., Lo J.Y., Tourassi G.D., Floy. Jr C.E., Self-organizing map for cluster analysis of a breast cancer database, Artificial Intelligence in Medicine 27 (2003) 113–127,.
[25]
Mosele N., Smith A., Galli M., Pagni F., Magni F., MALDI-MSI analysis of cytological smears: The study of thyroid cancer, Methods in Molecular Biology 1618 (2017) 37–47,.
[26]
Ngan S.-C., Yacoub E.S., Auffermann W.F., Hu X., Node merging in Kohonen’s self-organizing mapping of fMRI data, Artificial Intelligence in Medicine 25 (2002) 19–33,.
[27]
Obermeyer Z., Topol E.J., Artificial intelligence bias, and patients’ perspectives, The Lancet 397 (2021) 2038,.
[28]
Ostropolets A., Zhang L., Hripcsak G., A scoping review of clinical decision support tools that generate new knowledge to support decision making in real time, The official journal of the American Medical Informatics Association 27 (2020) 1968–1976,.
[29]
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830.
[30]
Pietrowska M., Diehl H.C., Mrukwa G., Kalinowska-Herok M., Gawin M., Chekan M., et al., Molecular profiles of thyroid cancer subtypes: Classification based on features of tissue revealed by mass spectrometry imaging, Biochimica et Biophysica ACTA (BBA) - Proteins and Proteom 1865 (2017) 837–845,.
[31]
Piga I., Capitoli G., Clerici F., Brambilla V., Leni D., Scardilli M., et al., Molecular trait of follicular-patterned thyroid neoplasms defined by MALDI-imaging, Biochimica et Biophysica ACTA (BBA) - Proteins and Proteom 1868 (2020),.
[32]
Piga I., Capitoli G., Denti V., Tettamanti S., Smith A., Stella M., et al., The management of haemoglobin interference for the MALDI-MSI proteomics analysis of thyroid fine needle aspiration biopsies, Analytical and Bioanalytical Chemistry 411 (5007–5012) (2019),.
[33]
Piga I., Capitoli G., Tettamanti S., Denti V., Smith A., Chinello C., et al., Feasibility study for the MALDI-MSI analysis of thyroid fine needle aspiration biopsies: evaluating the morphological and proteomic stability over time PROTEOM, Clinical and Applied 13 (2019),.
[34]
Pourkia J., Rahimi S., Baghaei K.T., Hospital data interpretation: A Self-Organizing Map approach, in: International fuzzy systems association world congress, Springer, 2019, pp. 493–504,.
[35]
Rajkomar A., Dean J., Kohane I., Machine learning in medicine, New England Journal of Medicine 380 (2019) 1347–1358,.
[36]
Rundo L., Tangherloni A., Cazzaniga P., Mistri M., Galimberti S., Woitek R., et al., A CUDA-powered method for the feature extraction and unsupervised analysis of medical images, The Journal of Supercomputer (2021) 1–18,.
[37]
Seddiki K., Saudemont P., Precioso F., Ogrinc N., Wisztorski M., Salzet M., et al., Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification, Nature Communications 11 (2020) 1–11,.
[38]
Shukla N., Hagenbuchner M., Win K.T., Yang J., Breast cancer data analysis for survivability studies and prediction, Computer Methods and Programs in Biomedicine 155 (2018) 199–208,.
[39]
Stein S.E., Scott D.R., Optimization and testing of mass spectral library search algorithms for compound identification, Journal of the American Society for Mass Spectrometry 5 (1994) 859–866,.
[40]
Sutton R.T., Pincock D., Baumgart D.C., Sadowski D.C., Fedorak R.N., Kroeker K.I., An overview of clinical decision support systems: benefits risks, and strategies for success, Npj Digital Medicine 3 (2020) 1–10,.
[41]
Tian, J., Azarian, M. H., & Pecht, M. Anomaly detection using self-organizing maps-based k-nearest neighbor algorithm. In Proceedings of the European conference of the prognostics and health management society (pp. 1–9). Citeseer, https://doi.org/10.36001/phme.2014.v2i1.1554.
[42]
Tibshirani R., Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society. Series B. Statistical Methodology 58 (267–288) (1996),.
[43]
Verbeeck N., Caprioli R.M., Plas R.Van de., Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry, Mass Spectrometry Reviews 39 (2020) 245–291,.
[44]
Vesanto J., SOM-based data visualization methods, Intelligent Data Analysis 3 (1999) 111–126,.
[45]
Vesanto J., Alhoniemi E., Clustering of the self-organizing map, IEEE Transactions on Neural Networks 11 (2000) 586–600,.
[46]
Vettigli G., MiniSom: minimalistic and NumPy-based implementation of the self organizing map, 2018, https://github.com/JustGlowing/minisom/.
[47]
Wan K.X., Vidavsky I., Gross M.L., Comparing similar spectra: from similarity index to spectral contrast angle, Journal of the American Society for Mass Spectrometry 13 (2002) 85–88,.
[48]
Wang J., Delabie J., Aasheim H.C., Smeland E., Myklebost O., Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study, BMC Biomedicine 3 (2002) 1–9,.
[49]
Yamagutchi T., Nagata K., Truong P.Q., Pfurtscheller G., Inoue K., Pattern recognition of EEG signal during motor imagery by using SOM, in: Second International Conference on Innovative Computing, Information and Control (ICICIC 2007), IEEE, 2007, p. 121,.
[50]
Zou H., Hastie T., Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society. Series B. Statistical Methodology 67 (2005) 301–320,.

Index Terms

  1. Unsupervised neural networks as a support tool for pathology diagnosis in MALDI-MSI experiments: A case study on thyroid biopsies
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Expert Systems with Applications: An International Journal
            Expert Systems with Applications: An International Journal  Volume 215, Issue C
            Apr 2023
            1634 pages

            Publisher

            Pergamon Press, Inc.

            United States

            Publication History

            Published: 01 April 2023

            Author Tags

            1. SOM
            2. MALDI
            3. ToF
            4. MSI
            5. LASSO
            6. AI
            7. FNA
            8. DESI
            9. DSUUL
            10. ROI
            11. H&E
            12. ANN
            13. BMU
            14. PTC
            15. HP
            16. HT
            17. NIFTP
            18. TIC
            19. MAD
            20. GPU
            21. SIMD

            Author Tags

            1. Self-Organizing Maps
            2. Unsupervised learning
            3. MALDI-MSI
            4. Mass spectrometry
            5. Thyroid carcinoma
            6. Precision medicine

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 27 Dec 2024

            Other Metrics

            Citations

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media