Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Every planar graph without 5-cycles and K 4 − and adjacent 4-cycles is ( 2, 0, 0 )-colorable

Published: 01 February 2020 Publication History

Abstract

In 1976, Steinberg conjectured that every planar graph without 4-cycles and 5-cycles is 3-colorable, and in 2003, Borodin and Raspaud further conjectured that every planar graph without 5-cycles and K 4 − is 3-colorable. Both conjectures are disproved in 2016 by Cohen-Addad et al. In this paper, we prove a relaxation of the conjectures that every planar graph without 5-cycles and K 4 − and adjacent 4-cycles is ( 2, 0, 0 )-colorable, which improves the results of Chen et al. (2016) and of Liu et al. (2015).

References

[1]
Borodin O.V., Colorings of plane graphs: A survey, Discrete Math. 313 (2013) 517–539.
[2]
Borodin O.V., Glebov A.N., A sufficient condition for planar graphs to be 3-colorable, Diskretn. Anal. Issled. Oper. 10 (2004) 3–11. (in Russian).
[3]
Borodin O.V., Glebov A.N., Planar graphs with neither 5-cycles nor close 3-cycles are 3-colorable, J. Graph Theory 66 (2011) 1–31.
[4]
Borodin O.V., Glebov A.N., Raspaud A.R., Salavatipour M.R., Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2005) 303–311.
[5]
Borodin O.V., Raspaud A., A sufficient condition for planar graphs to be 3-colorable, J. Combin. Theory Ser B 88 (2003) 17–27.
[6]
Chen M., Wang Y., Liu P., Xu J., Planar graphs without cycles of length 4 or 5 are ( 2, 0, 0 )-colorable, Discrete Math. 339 (2016) 886–903.
[7]
Cohen-Addad V., Hebdige M., Kral D., Li Z., Salgado E., Steinberg’s conjecture is false, J. Combin. Theory Ser. B 122 (2017) 452–456.
[8]
Dvörák Z., Král D., Thomas R., Coloring planar graphs with triangles far apart, 2009, Mathematics ArXiV, arXiv:0911.0885.
[9]
Grötzsch H., Ein dreifarbensatz fǔr dreikreisfreienetze auf der kugel, Math.-Nat.Reihe 8 (1959) 109–120.
[10]
Havel I., On a conjecture of Grunbaum, J. Combin. Theory Ser B 7 (1969) 184–186.
[11]
Hill O., Smith D., Wang Y., Xu L., Yu G., Planar graphs without 4-cycles and 5-cycles are ( 3, 0, 0 )-colorable, Discrete Math. 313 (2013) 2312–2317.
[12]
Huang Z., Li X., Yu G., A relaxation of the strong Bordeaux conjecture, J. Graph Theory 88 (2018) 237–254.
[13]
Liu R., Li X., Yu G., A relaxation of the Bordeaux conjecture, European J. Combin. 49 (2015) 240–249.
[14]
Liu R., Li X., Yu G., Planar graphs without 5-cycles and intersecting triangles are ( 1, 1, 0 )-colorable, Discrete Math. 339 (2016) 992–1001.
[15]
Steinberg R., The state of the three color problem, Quo Vadis, Graph Theory, Ann. Discrete Math. 55 (1993) 211–248.
[16]
Xu B., A 3-color theorem on plane graph without 5-circuits, Acta Math Sinica 23 (2007) 1059–1062.
[17]
Xu B., On ( 3, 1 ) ∗-coloring of planar graphs, SIAM J. Disceret Math. 23 (2008) 205–220.
[18]
Xu L., Miao Z., Wang Y., Every planar graph with cycles of length neither 4 nor 5 is ( 1, 1, 0 )-colorable, J. Comb. Optim. 28 (2014) 774–786.
[19]
Xu L., Wang Y., Improper colorability of planar graphs with cycles of length neither 4 nor 6, Sci. Sin. Math. 43 (2013) 15–24. (in Chinese).

Index Terms

  1. Every planar graph without 5-cycles and K 4 − and adjacent 4-cycles is ( 2 , 0 , 0 )-colorable
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Discrete Mathematics
    Discrete Mathematics  Volume 343, Issue 2
    Feb 2020
    361 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 February 2020

    Author Tags

    1. Coloring
    2. Planar graphs
    3. Steinberg conjecture
    4. Improper coloring
    5. Discharging
    6. Superextendable

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 29 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media