Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Mesh-based and meshless design and approximation of scalar functions

Published: 01 October 2017 Publication History

Abstract

In engineering, geographical applications, bio-informatics, and scientific visualisation, a variety of phenomena is described by data modelled as the values of a scalar function defined on a surface or a volume, and critical points (i.e., maxima, minima, saddles) usually represent a relevant information about the input data or an underlying phenomenon. Furthermore, the distribution of the critical points is crucial for geometry processing and shape analysis; e.g., for controlling the number of patches in quadrilateral remeshing and the number of nodes of Reeb graphs and MorseSmale complexes. In this context, we address the design of a smooth function, whose maxima, minima, and saddles are selected by the user or imported from a template (e.g., Laplacian eigenfunctions, diffusion maps). In this way, we support the selection of the saddles of the resulting function and not only its extrema, which is one of the main limitations of previous work. Then, we discuss the meshless approximation of an input scalar function by preserving its persistent critical points and its local behaviour, as encoded by the spatial distribution and shape of the level-sets. Both problems are addressed by computing an implicit approximation with radial basis functions, which is independent of the discretisation of differential operators and of assumptions on the sampling of the input domain. This approximation allows us to introduce a meshless iso-contouring and classification of the critical points, which are characterised in terms of the differential properties of the meshless approximation and of the geometry of the input surface, as encoded by its first and second fundamental form. Furthermore, the computation is performed at an arbitrary resolution by locally refining the input surface and by applying differential calculus to the meshless approximation. As main applications, we consider the approximation and analysis of scalar functions on both 3D shapes and volumes in graphics, Geographic Information Systems, medicine, and bio-informatics. (a) Selected critical points: 1 maximum (red dot), 1 minimum (blue dot), 6 saddles (green dots) and level-sets of the scalar function designed with the meshless approach and (b, c) two generating kernels. Design of smooth functions, with critical points selected by the user or imported from a template.Selection of the saddles in the designed function and not only its extrema.Meshless approximation of functions by preserving its persistent critical points and behaviour.Meshless iso-contouring and classification of the critical points.Computation at an arbitrary resolution through local surface refining differential calculus.

References

[1]
A. Adamson, M. Alexa, Approximating and intersecting surfaces from points, in: ACM Symposium on Geometry Processing, 2003, pp. 230-239.
[2]
M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, C.T. Silva, Point set surfaces, in: IEEE Visualization, 2001, pp. 21-28.
[3]
N. Amenta, Y. Kil, The domain of a point set surface, in: Symposium on Point-Based Graphics, 2004, pp. 139-148.
[4]
N. Amenta, Y.J. Kil, Defining point-set surfaces, in: ACM SIGGRAPH, 2004, pp. 264-270.
[5]
L. Andersson, T. Elfving, Interpolation and approximation by monotone cubic splines, J. Approx. Theory, 66 (1991) 302-333.
[6]
N. Aronszajn, Theory of reproducing kernels, Transl. Am. Math. Soc., 68 (1950) 337-404.
[7]
T. Banchoff, Critical points and curvature for embedded polyhedra, J. Differ. Geom., 1 (1967) 245-256.
[8]
M. Barton, G. Elber, I. Hanniel, Topologically guaranteed univariate solutions of underconstrained polynomial systems via no-loop and single-component tests, Comput. Aided Des., 43 (2011) 1035-1044.
[9]
U. Bauer, C. Lange, M. Wardetzky, Optimal topological simplification of discrete functions on surfaces, Discrete Comput. Geom., 47 (2012) 347-377.
[10]
Introduction to Implicit Surfaces, in: Introduction to Implicit Surfaces, Morgan Kaufmann Publishers Inc, 1997.
[11]
P. Bremer, H. Edelsbrunner, B. Hamann, V. Pascucci, A topological hierarchy for functions on triangulated surfaces, IEEE Trans. Vis. Comput. Graph., 10 (2004) 385-396.
[12]
M. Bronstein, A. Bronstein, Shape recognition with spectral distances, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011) 1065-1071.
[13]
W. Carey, D. Chuang, S. Hemami, Regularity-preserving image interpolation, IEEE Trans. Image Process., 8 (1999) 1293-1297.
[14]
H. Carr, J. Snoeyink, M. van de Panne, Simplifying flexible isosurfaces using local geometric measures, in: IEEE Visualization, 2004, pp. 497-504.
[15]
J.C. Carr, R.K. Beatson, J.B. Cherrie, T.J. Mitchell, W.R. Fright, B.C. McCallum, T.R. Evans, Reconstruction and representation of 3D objects with radial basis functions, in: ACM SIGGRAPH, 2001, pp. 67-76.
[16]
M. Chen, C. Huang, W. Lee, A fast edge-oriented algorithm for image interpolation, Image Vis. Comput., 23 (2005) 791-798.
[17]
A.R. Conn, N.I.M. Gould, P.L. Toint, Trust-Region Methods, Society for Industrial and Applied Mathematics, 2000.
[18]
M. Desbrun, M. Meyer, P. Schrder, A.H. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow, in: ACM SIGGRAPH, 1999, pp. 317-324.
[19]
T.K. Dey, J. Sun, An adaptive MLS surface for reconstruction with guarantees, in: ACM Symp. on Geometry Processing, 2005, pp. 43-52.
[20]
S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, J.C. Hart, Spectral surface quadrangulation, in: ACM SIGGRAPH, 2006, pp. 1057-1066.
[21]
N. Dyn, D. Levin, S. Rippa, Numerical procedures for surface fitting of scattered data by radial functions, SIAM J. Sci. Stat. Comput., 7 (1986) 639-659.
[22]
H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Local and global comparison of continuous functions, in: IEEE Visualization, 2004, pp. 275-280.
[23]
H. Edelsbrunner, D. Morozov, V. Pascucci, Persistencesensitive simplification functions on 2-manifolds, in: ACM Symp. on Computational Geometry, 2006, pp. 127-134.
[24]
G. Elber, M.-S. Kim, Geometric constraint solver using multivariate rational spline functions, in: Proc. of ACM Symposium on Solid Modeling and Applications, ACM, New York, NY, USA, 2001, pp. 1-10.
[25]
T.G. Farr, P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, The Shuttle radar topography mission, Rev. Geophys., 45 (2007).
[26]
F. Fogolari, A. Brigo, H. Molinari, The PoissonBoltzmann equation for biomolecular electrostatics: a tool for structural biology, J. Mol. Recognit., 15 (2002) 377-392.
[27]
G. Golub, G. VanLoan, Matrix Computations, John Hopkins University Press, 1989.
[28]
P.C. Hansen, D.P. O'Leary, The use of the l-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14 (1993) 1487-1503.
[29]
J.C. Hart, A. Durr, D. Harsh, Critical points of polynomial metaballs, in: Proc. of Implicit Surfaces, 1998, pp. 69-76.
[30]
J. Huang, M. Zhang, J. Ma, X. Liu, L. Kobbelt, H. Bao, Spectral quadrangulation with orientation and alignment control, ACM Trans. Graph., 27 (2008) 1-9.
[31]
X. Jiao, H. Zha, Consistent computation of first- and second-order differential quantities for surface meshes, in: Proc. of ACM Symp. on Solid and Physical Modeling, 2008, pp. 159-170.
[32]
R. Kimmel, J.A. Sethian, Computing geodesic paths on manifolds, in: Proc. of the National Academy of Sciences, 1998, pp. 8431-8435.
[33]
D. Levin, The approximation power of moving least-squares, Math. Comput., 67 (1998) 1517-1531.
[34]
Levin, D., 2003. Mesh-independent surface interpolation. In: Geometric Modeling for Scientific Visualization.
[35]
Y.-S. Liu, M. Liu, D. Kihara, K. Ramani, Salient critical points for meshes, in: Proc. of Symp. on Solid and Physical Modeling, 2007, pp. 277-282.
[36]
W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface construction algorithm, ACM Trans. Graph., 21 (1987) 163-169.
[37]
C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx., 2 (1986) 11-22.
[38]
N.J. Mitra, A. Nguyen, Estimating surface normals in noisy point cloud data, in: Proc. of Symp. on Computational Geometry, 2003, pp. 322-328.
[39]
B.S. Morse, T.S. Yoo, D.T. Chen, P. Rheingans, K.R. Subramanian, Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions, in: IEEE Shape Modeling and Applications, 2001, pp. 89-98.
[40]
M. Natali, G. Tagliafico, G. Patan, Local up-sampling and morphological analysis of low-resolution MR images, Neurocomputing (2017).
[41]
X. Ni, M. Garland, J.C. Hart, Fair Morse functions for extracting the topological structure of a surface mesh, in: ACM SIGGRAPH, 2004, pp. 613-622.
[42]
Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, H.-P. Seidel, Multi-level partition of unity implicits, ACM Trans. Graph., 22 (2003) 463-470.
[43]
Y. Ohtake, A. Belyaev, H.-P. Seidel, 3D scattered data interpolation and approximation with multilevel compactly supported RBFs, Graph. Models, 67 (2005) 150-165.
[44]
V. Pascucci, G. Scorzelli, P. Bremer, A. Mascarenhas, Robust on-line computation of Reeb graphs: simplicity and speed, ACM Trans. Graph., 26 (2007) 58.
[45]
G. Patan, Accurate and efficient computation of Laplacian spectral distances and kernels, Comput. Graph. Forum, 36 (2017) 184-196.
[46]
G. Patan, A. Cerri, V. Skytt, S. Pittaluga, S. Biasotti, D. Sobrero, T. Dokken, M. Spagnuolo, Comparing methods for the approximation of rainfall fields in environmental applications, ISPRS Int. J. Photogramm. Remote Sens., 127 (2017) 5772.
[47]
G. Patan, B. Falcidieno, Computing smooth approximations of scalar functions with constraints, Comput. Graph., 33 (2009) 399-413.
[48]
G. Patan, M. Spagnuolo, State-of-the-Art and Perspectives of Geometric and Implicit Modeling for Molecular Surfaces, Springer International Publishing, 2015.
[49]
G. Patan, M. Spagnuolo, Heterogeneous Spatial Data: Fusion, Modeling, and Analysis for GIS Applications. Synthesis Lectures on Visual Computing, Morgan & Claypool Publishers, 2016.
[50]
G. Patan, M. Spagnuolo, B. Falcidieno, A minimal contouring approach to the computation of the Reeb graph, IEEE Trans. Vis. Comput. Graph., 15 (2009) 583-595.
[51]
L. Piegl, W. Tiller, The NURBS Book, Springer-Verlag, New York, 1997.
[52]
U. Pinkall, K. Polthier, Computing discrete minimal surfaces and their conjugates, Exp. Math., 2 (1993) 15-36.
[53]
T. Poggio, F. Girosi, Networks for approximation and learning, Proc. IEEE, 78 (1990) 1481-1497.
[54]
M. Reuter, F.-E. Wolter, M.E. Shenton, M. Niethammer, LaplaceBeltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis, Comput. Aided Des., 41 (2009) 739-755.
[55]
S.S. Rifman, Digital rectification of ERTS multispectral imagery, in: Proc. of Symp. Significant Results Obtained from ERTS-I, vol. 1, 1973, pp. 1131-1142.
[56]
G. Taubin, A signal processing approach to fair surface design, in: ACM SIGGRAPH 1995, 1995, pp. 351-358.
[57]
R. Teegavarapu, V. Chandramouli, Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records, J. Hydrol., 312 (2005) 191-206.
[58]
A.H. Thiessen, Precipitation averages for large areas, Mon. Weather Rev., 39 (1911) 1082-1089.
[59]
J. Tierny, D. Gnther, V. Pascucci, Optimal General Simplification of Scalar Fields on Surfaces, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.
[60]
J. Tierny, A. Gyulassy, E. Simon, V. Pascucci, Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees, IEEE Trans. Vis. Comput. Graph., 15 (2009) 1177-1184.
[61]
J. Tierny, V. Pascucci, Generalized topological simplification of scalar fields on surfaces, IEEE Trans. Vis. Comput. Graph., 18 (2012) 2005-2013.
[62]
G. Turk, J.F. O'Brien, Modelling with implicit surfaces that interpolate, ACM Trans. Graph., 21 (2002) 855-873.
[63]
G. Wahba, Spline Models for Observational Data, SIAM, Philadelphia, 1990.
[64]
H. Wendland, Real piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4 (1995) 389-396.
[65]
S.-T. Wu, M. De Gomensoro, On improving the search for critical points of implicit functions, in: Proc. Implicit Surfaces, 1999, pp. 73-80.
[66]
H. Xie, K.T. McDonnell, H. Qin, Surface reconstruction of noisy and defective data sets, in: IEEE Visualization, 2004, pp. 259-266.

Cited By

View all
  1. Mesh-based and meshless design and approximation of scalar functions

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Computer Aided Geometric Design
      Computer Aided Geometric Design  Volume 57, Issue C
      October 2017
      77 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 01 October 2017

      Author Tags

      1. Applications
      2. Critical points
      3. Laplacian matrix
      4. Meshless approximation
      5. Scalar function design
      6. Visualisation

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 21 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media