Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Optimal Topological Simplification of Discrete Functions on Surfaces

Published: 01 March 2012 Publication History

Abstract

Given a function f on a surface and a tolerance ź>0, we construct a function fź subject to źfźźfźź≤ź such that fź has a minimum number of critical points. Our construction relies on a connection between discrete Morse theory and persistent homology and completely removes homological noise with persistence ≤2ź from the input function f. The number of critical points of the resulting simplified function fź achieves the lower bound dictated by the stability theorem of persistent homology. We show that the simplified function can be computed in linear time after persistence pairs have been computed.

References

[1]
Agarwal, P.K., Arge, L., Yi, K.: I/O-efficient batched union-find and its applications to terrain analysis. In: SCG '06: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 167---176. ACM, New York (2006)
[2]
Attali, D., Glisse, M., Hornus, S., Lazarus, F., Morozov, D.: Persistence-sensitive simplification of functions on surfaces in linear time. Preprint (2008)
[3]
Banchoff, T.: Critical points and curvature for embedded polyhedra. J. Differ. Geom. 1(3---4), 245---256 (1967)
[4]
Bauer, U.: Persistence in discrete Morse theory. PhD thesis, University of Göttingen (2011)
[5]
Chari, M.K.: On discrete Morse functions and combinatorial decompositions. Discrete Math. 217(1---3), 101---113 (2000)
[6]
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103---120 (2007)
[7]
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79---103 (2008)
[8]
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)
[9]
Danner, A., MØlhave, T., Yi, K., Agarwal, P.K., Arge, L., Mitasova, H.: Terra-Stream: from elevation data to watershed hierarchies. In: GIS '07: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, pp. 1---8. ACM, New York (2007)
[10]
de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)homology. Unpublished manuscript (2010)
[11]
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511---533 (2002)
[12]
Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse---Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30(1), 87---107 (2003)
[13]
Edelsbrunner, H., Morozov, D., Pascucci, V.: Persistence-sensitive simplification functions on 2-manifolds. In: SCG '06: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 127---134. ACM, New York (2006)
[14]
Eells, J., Kuiper, N.: Manifolds which are like projective planes. Publ. Math. Inst. Hautes Études Sci. 14(1), 5---46 (1962)
[15]
Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90---145 (1998)
[16]
Forman, R.: A user's guide to discrete Morse theory. Sémin. Lothar. Comb. B48c, 1---35 (2002)
[17]
Gray, C., Kammer, F., Löffler, M., Silveira, R.I.: Removing local extrema from imprecise terrains. Preprint (2010). arXiv:1002.2580
[18]
Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of Morse---Smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13(6), 1440---1447 (2007)
[19]
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
[20]
Jenson, S.K., Domingue, J.O.: Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens. 54(11), 1593---1600 (1988)
[21]
Joswig, M., Pfetsch, M.E.: Computing optimal Morse matchings. SIAM J. Discrete Math. 20(1), 11---25 (2006)
[22]
Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology, 1st edn. Applied Mathematical Sciences, vol. 157. Springer, Berlin (2004)
[23]
King, H., Knudson, K., Mramor, N.: Generating discrete Morse functions from point data. Exp. Math. 14(4), 435---444 (2005)
[24]
Kosinski, A.: Singularities of piecewise linear mappings. I Mappings into the real line. Bull. Am. Math. Soc. 68(2), 110---114 (1962)
[25]
Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48---50 (1956)
[26]
Kühnel, W.: Triangulations of manifolds with few vertices. In: Tricerri, F. (ed.) Advances in Differential Geometry and Topology, pp. 59---114. World Scientific, Singapore (1990)
[27]
Large Geometric Models Archive. Georgia Institute of Technology. Available from: http://www.cc.gatech.edu/projects/large_models/
[28]
Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26(3), 221---233 (2003)
[29]
Lundell, A.T., Weingram, S.: The Topology of CW Complexes. Van Nostrand-Reinhold, New York (1969)
[30]
Milnor, J.: Morse Theory. Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton (1963)
[31]
Morozov, D.: Homological illusions of persistence and stability. PhD thesis, Duke University (2008)
[32]
Morse, M.: The elimination of critical points of a non-degenerate function on a differentiable manifold. J. Anal. Math. 13(1), 257---316 (1964)
[33]
Soille, P.: Morphological carving. Pattern Recognit. Lett. 25(5), 543---550 (2004)
[34]
Soille, P.: Optimal removal of spurious pits in grid digital elevation models. Water Resour. Res. 40(12), W12509+ (2004)
[35]
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25---57 (2006)
[36]
Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249---274 (2005)

Cited By

View all
  • (2023)Using Foliation Leaves to Extract Reeb Graphs on SurfacesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.314176429:4(2117-2131)Online publication date: 1-Apr-2023
  • (2019)Local-global merge tree computation with local exchangesProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3295500.3356188(1-13)Online publication date: 17-Nov-2019
  • (2017)Improved Road Network Reconstruction using Discrete Morse TheoryProceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/3139958.3140031(1-4)Online publication date: 7-Nov-2017
  • Show More Cited By
  1. Optimal Topological Simplification of Discrete Functions on Surfaces

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Discrete & Computational Geometry
    Discrete & Computational Geometry  Volume 47, Issue 2
    March 2012
    219 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 March 2012

    Author Tags

    1. Discrete Morse theory
    2. Persistent homology
    3. Topological denoising

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Using Foliation Leaves to Extract Reeb Graphs on SurfacesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.314176429:4(2117-2131)Online publication date: 1-Apr-2023
    • (2019)Local-global merge tree computation with local exchangesProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3295500.3356188(1-13)Online publication date: 17-Nov-2019
    • (2017)Improved Road Network Reconstruction using Discrete Morse TheoryProceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/3139958.3140031(1-4)Online publication date: 7-Nov-2017
    • (2017)Approximation algorithms for Max Morse MatchingComputational Geometry: Theory and Applications10.1016/j.comgeo.2016.10.00261:C(1-23)Online publication date: 1-Feb-2017
    • (2017)Mesh-based and meshless design and approximation of scalar functionsComputer Aided Geometric Design10.1016/j.cagd.2017.05.00557:C(23-43)Online publication date: 1-Oct-2017
    • (2016)Relation between total variation and persistence distance and its application in signal processingAdvances in Computational Mathematics10.1007/s10444-015-9438-842:3(651-674)Online publication date: 1-Jun-2016
    • (2015)Membrane parallelism for discrete Morse theory applied to digital imagesApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-014-0246-z26:1-2(49-71)Online publication date: 1-Mar-2015
    • (2013)Distributed merge treesACM SIGPLAN Notices10.1145/2517327.244252648:8(93-102)Online publication date: 23-Feb-2013
    • (2013)Homological reconstruction and simplification in R3Proceedings of the twenty-ninth annual symposium on Computational geometry10.1145/2462356.2462373(117-126)Online publication date: 17-Jun-2013
    • (2013)Distributed merge treesProceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming10.1145/2442516.2442526(93-102)Online publication date: 23-Feb-2013
    • Show More Cited By

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media