Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Modeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models

Published: 01 November 2022 Publication History

Abstract

Embryo selection is a critical step in assisted reproduction: good selection criteria are expected to increase the probability of inducing a pregnancy. Machine learning techniques have been applied for implantation prediction or embryo quality assessment, which embryologists can use to make a decision about embryo selection. However, this is a highly uncertain real-world problem, and current proposals do not model always all the sources of uncertainty.
We present a novel probabilistic graphical model that accounts for three different sources of uncertainty, the standard embryo and cycle viability, and a third one that represents any unknown factor that can drive a treatment to a failure in otherwise perfect conditions. We derive a parametric learning method based on the Expectation–Maximization strategy, which accounts for uncertainty issues.
We empirically analyze the model within a real database consisting of 604 cycles (3125 embryos) carried out at Hospital Donostia (Spain). Embryologists followed the protocol of the Spanish Association for Reproduction Biology Studies (ASEBIR), based on morphological features, for embryo selection. Our model predictions are correlated with the ASEBIR protocol, which validates our model. The benefits of accounting for the different sources of uncertainty and the importance of the cycle characteristics are shown. Considering only transferred embryos, our model does not further discriminate them as implanted or failed, suggesting that the ASEBIR protocol could be understood as a thorough summary of the available morphological features.

Highlights

A Probabilistic Graphical Model for ARTs that considers three sources of uncertainty.
A method for learning the model that uses all the available information of supervision.
An extensive empirical study to validate the proposed model.

References

[1]
Ardoy M., Caderón G., Arroyo G., Cuadros J., Figueroa M.J., Herrer R., Moreno J.M., Ortiz Á., Prados F., Rodríguez L., Santaló J., de los Santos M.J., Ten J., Torelló M.J., ASEBIR criteria for the morphological evaluation of human oocytes, early embryos and blastocysts, in: Clinical Embryology Papers, II, second ed., Asociación para el Estudio de la Biología de la Reproducción (ASEBIR), Madrid, Spain, 2008, pp. 1–59.
[2]
Spanish Society of Fertility M., National Registry of Activity 2018 - Registry SEF, Spanish Ministry of Health, 2018, https://www.registrosef.com/public/docs/sef2018_IAFIVm.pdf.
[3]
Engmann L., Maconochie N., Tan S., Bekir J., Trends in the incidence of births and multiple births and the factors that determine the probability of multiple birth after IVF treatment, Hum. Reprod. 16 (2001) 2598–2605,.
[4]
ESHRE Campus C.R., Prevention of twin pregnancies after IVF/ICSI by single embryo transfer, Hum. Reprod. 16 (4) (2001) 790–800,.
[5]
Cuevas Saiz I., Pons Gatell M.C., Cuadros Vargas M., Delgado Mendive A., Rives Enedáguila N., Moragas Solanes M., Carrasco Canal B., Teruel López J., Busquets Bonet A., Hurtado de Mendoza Acosta M.V., The Embryology Interest Group: updating ASEBIR’s morphological scoring system for early embryos, morulae and blastocysts, Medicina Reproductiva Y Embriología ClÍnica 5 (1) (2018) 42–54,.
[6]
Corani G., Magli M.C., Giusti A., Gianaroli L., Gambardella L.M., A Bayesian network model for predicting pregnancy after in vitro fertilization, Comput. Biol. Med. 43 (2013) 1783–1792,.
[7]
Guérif F., le Gouge A., Giraudeau B., Poindron J., Bidault R., Gasnier O., Royère D., Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos, Hum. Reprod. 22 (7) (2007) 1973–1981,.
[8]
Hernández-González J., Inza I., Crisol-Ortíz L., Guembe M.A., Iñarra M.J., Lozano J.A., Fitting the data from embryo implantation prediction: Learning from label proportions, Stat. Methods Med. Res. 27 (2018) 1056–1066,.
[9]
Kragh M., Rimestad J., Berntsen J., Karstoft H., Automatic grading of human blastocysts from time-lapse imaging, Comput. Biol. Med. 115 (2019),.
[10]
A. Torres-Martín, J. Hernández-González, J. Cerquides, Validation on Real Data of an Extended Embryo-Uterine Probabilistic Graphical Model for Embryo Selection, in: Proceedings of the 23rd International Conference of the Catalan Association for Artificial Intelligence (CCIA’21), 2021, https://doi.org/10.3233/FAIA210139.
[11]
Seshadri S., Sunkara S.K., Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis, Hum. Reprod. Update 20 (3) (2014) 429–438,.
[12]
Gat I., Levron J., Yerushalmi G., Dor J., Brengauz M., Orvieto R., Should zygote intrafallopian transfer be offered to all patients with unexplained repeated in-vitro fertilization cycle failures?, J. Ovarian Res. 7 (7) (2014),.
[13]
Polanski L.T., Baumgarten M.N., Quenby S., Brosens J., Campbell B.K., Raine-Fenning N.J., What exactly do we mean by ‘recurrent implantation failure’? A systematic review and opinion, Reproductive BioMedicine Online 28 (4) (2015) 409–423,.
[14]
Zaninovic N., Rosenwaks Z., Artificial intelligence in human in vitro fertilization and embryology, Fertility and Sterility 114 (5) (2020) 914–920,.
[15]
Siristatidis C., Pouliakis A., Chrelias C., Kassanos D., Artificial intelligence in IVF: A need, Syst. Biol. Reproductive Medicine 57 (4) (2011) 179–185,.
[16]
Simopoulou M., Sfakianoudis K., Maziotis E., Antoniou N., Rapani A., Anifandis G., Bakas P., Bolaris S., Pantou A., Pantos K., Koutsilieris M., Are computational applications the “crystal ball” in the IVF laboratory? The evolution from mathematics to artificial intelligence, J. Assis. Reproduction and Genet. 35 (2018) 1545–1557,.
[17]
Fernandez E.I., Ferreira A.S., Cecílio M.H.M., Chéles D.S., de Souza R.C.M., Nogueira M.F.G., Rocha J.C., Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data, J. Assist. Reproduction and Genet. 37 (10) (2020) 2359–2376,.
[18]
Roberts S.A., Models for assisted conception data with embryo-specific covariates, Stat. Med. 26 (1) (2007) 156–170,.
[19]
Patrizi G., Manna C., Moscatelli C., Nieddu L., Pattern recognition methods in human-assisted reproduction, Int. Trans. Oper. Res. 11 (2004) 365–379,.
[20]
Manna C., Patrizi G., Rahman A., Sallam H., Experimental results on the recognition of embryos in human assisted reproduction, Reproductive Biomedicine Online 8 (4) (2004) 460–469,.
[21]
Minasi M.G., Greco P., Varricchio M.T., Barillari P., Greco E., The clinical use of time-lapse in human-assisted reproduction, Therap. Adv. Reproductive Health 14 (2020),.
[22]
Kieslinger D.C., De Gheselle S., Lambalk C.B., De Sutter P., Kostelijk E.H., Twisk J.W., van Rijswijk J., Van den Abbeel E., Vergouw C.G., Embryo selection using time-lapse analysis (Early Embryo Viability Assessment) in conjunction with standard morphology: a prospective two-center pilot study, Hum. Reprod. 31 (11) (2016) 2450–2457,.
[23]
Miyagi Y., Habara T., Hirata R., Hayashi N., Predicting a live birth by artificial intelligence incorporating both the blastocyst image and conventional embryo evaluation parameters, Artif. Intell. Med. Imaging 1 (3) (2020) 94–107,.
[24]
Güvenir H.A., Misirli G., Dilbaz S., Ozdegirmenci O., Demir B., Dilbaz B., Estimating the chance of success in IVF treatment using a ranking algorithm, Med. Biol. Eng. Comput. 53 (2015) 911–920,.
[25]
Bori L., Paya E., Alegre L., Viloria T.A., Remohi J.A., Naranjo V., Meseguer M., Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential, Fertil. Steril. 114 (6) (2020) 1232–1241,.
[26]
Morales D.A., Bengoetxea E., Larranaga P., García M., Franco Y., Fresnada M., Merino M., Bayesian classification for the selection of in-vitro human embryos using morphological and clinical data, Comput. Methods Programs Biomed. 90 (2008) 104–116,.
[27]
Uyar A., Bener A., Ciray H.N., Predictive modeling of implantation outcome in an in vitro fertilization setting: An application of machine learning methods, Med. Decis. Making: An Int. J. Soc. Medical Decis. Making 35 (6) (2015) 714–725,.
[28]
Septiandri A.A., Jamal A., Iffanolida P.A., Riayati O., Wiweko B., Human blastocyst classification after in vitro fertilization using deep learning, in: Proceedings of the 7th International Conference on Advance Informatics: Concepts, Theory and Applications, ICAICTA, 2020,.
[29]
Babayev E., Man versus machine in in vitro fertilization—can artificial intelligence replace physicians?, Fertil. Steril. 114 (5) (2020) 963,.
[30]
VerMilyea M., Hall J., Diakiw S.M., Johnston A., Nguyen T., Perugini D., Miller A., Picou A., Murphy A.P., Perugini M., Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF, Hum. Reprod. 35 (4) (2020) 770–784,.
[31]
Müller H., Mayrhofer M.T., Van Veen E.-B., Holzinger A., The ten commandments of ethical medical AI, Computer 54 (7) (2021) 119–123,.
[32]
Debón A., Molina I., Cabrera S., Pellicer A., Mathematical methodology to obtain and compare different embryo scores, Math. Comput. Modelling 57 (5) (2013) 1380–1394,.
[33]
Racowsky C., Ohno-Machado L., Kim J., Biggers J., Is there an advantage in scoring early embryos on more than one day?, Hum. Reprod. 24 (9) (2009) 2104–2113,.
[34]
Speirs A.L., Lopata A., Gronow M.J., Kellow G.N., Johnston W.I.H., Analysis of the benefits and risks of multiple embryo transfer, Fertil. Steril. 39 (4) (1983) 468–471,.
[35]
Zhou H., Weinberg C.R., Evaluating effects of exposures on embryo viability and uterine receptivity in in vitro fertilization, Stat. Med. 17 (14) (1998) 1601–1612.
[36]
Roberts S.A., Stylianou C., The non-independence of treatment outcomes from repeat IVF cycles: estimates and consequences, Hum. Reprod. 27 (2) (2012) 436–443,.
[37]
Koller D., Friedman N., Probabilistic Graphical Models: Principles and Techniques, The MIT Press, 2009.
[38]
Coughlan C., Ledger W., Wang Q., Liu F., Demirol A., Gurgan T., Cutting R., Ong K., Sallam H., Li T.C., Recurrent implantation failure: definition and management, Reproductive BioMedicine Online 28 (1) (2015) 14–38,.
[39]
Dempster A.P., Laird N.M., Rubin D.B., Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B Stat. Methodol. 39 (1) (1977) 1–38. http://www.jstor.org/stable/2984875.
[40]
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E., Scikit-learn: Machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html.
[41]
Chapelle O., Schökopf B., Zien A., Semi-Supervised Learning, MIT Press, 2006.
[42]
Hernández-González J., Inza I., Lozano J.A., Weak supervision and other non-standard classification problems: A taxonomy, Pattern Recognit. Lett. 69 (2016) 49–55,.
[43]
Bradley A.P., The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognit. 30 (7) (1997) 1145–1159,.
[44]
Fawcett T., An introduction to ROC analysis, Pattern Recognit. Lett. 27 (8) (2006) 861–874,.
[45]
Davis J., Goadrich M., The relationship between precision-recall and ROC curves, in: Proceedings of the 23rd International Conference on Machine Learning (ICML’06), 2006, pp. 233–240,.
[46]
Carrington A.M., Fieguth P.W., Qazi H., Holzinger A., Chen H.H., Mayr F., Manuel D.G., A new concordant partial AUC and partial c statistic for imbalanced data in the evaluation of machine learning algorithms, BMC Med. Inform. Decis. Mak. 20 (2020) 4,.

Cited By

View all
  • (2024)Optimizing trigger timing in minimal ovarian stimulation for In Vitro fertilization using machine learning models with random search hyperparameter tuningComputers in Biology and Medicine10.1016/j.compbiomed.2024.108856179:COnline publication date: 1-Sep-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers in Biology and Medicine
Computers in Biology and Medicine  Volume 150, Issue C
Nov 2022
1546 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 01 November 2022

Author Tags

  1. Assisted reproductive technologies
  2. Embryo selection
  3. Machine learning
  4. Probabilistic graphical models
  5. Expectation–Maximization

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Optimizing trigger timing in minimal ovarian stimulation for In Vitro fertilization using machine learning models with random search hyperparameter tuningComputers in Biology and Medicine10.1016/j.compbiomed.2024.108856179:COnline publication date: 1-Sep-2024

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media