Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Optimizing trigger timing in minimal ovarian stimulation for In Vitro fertilization using machine learning models with random search hyperparameter tuning

Published: 01 September 2024 Publication History

Abstract

Various studies have emphasized the importance of identifying the optimal Trigger Timing (TT) for the trigger shot in In Vitro Fertilization (IVF), which is crucial for the successful maturation and release of oocytes, especially in minimal ovarian stimulation treatments. Despite its significance for the ultimate success of IVF, determining the precise TT remains a complex challenge for physicians due to the involvement of multiple variables. This study aims to enhance TT by developing a machine learning multi-output model that predicts the expected number of retrieved oocytes, mature oocytes (MII), fertilized oocytes (2 PN), and useable blastocysts within a 48-h window after the trigger shot in minimal stimulation cycles. By utilizing this model, physicians can identify patients with possible early, late, or on-time trigger shots. The study found that approximately 27 % of treatments administered the trigger shot on a suboptimal day, but optimizing the TT using the developed Artificial Intelligence (AI) model can potentially increase useable blastocyst production by 46 %. These findings highlight the potential of predictive models as a supplementary tool for optimizing trigger shot timing and improving IVF outcomes, particularly in minimal ovarian stimulation. The experimental results underwent statistical validation, demonstrating the accuracy and performance of the model. Overall, this study emphasizes the value of AI prediction models in enhancing TT and making the IVF process safer and more efficient.

Highlights

AI-optimized trigger timing significantly increases the number of useable blastocysts.
Oocyte quality and quantity are crucial for successful blastocyst formation.
Hyperparameter optimization in ANN model significantly improves trigger timing.
Architecture ANN analysis identifies key variables impacting blastocyst numbers.

References

[1]
: Fact sheet: in vitro fertilization (IVF) use across the United States | HHS.gov n.d. https://www.hhs.gov/about/news/2024/03/13/fact-sheet-in-vitro-fertilization-ivf-use-across-united-states.html.
[2]
B.C.J.M. Fauser, P. Devroey, S.S.C. Yen, R. Gosden, Jr WF. Crowley, D.T. Baird, et al., Minimal ovarian stimulation for IVF: appraisal of potential benefits and drawbacks, Hum. Reprod. 14 (1999) 2681–2686,.
[3]
M. Fanton, J.H. Cho, V.L. Baker, K. Loewke, A higher number of oocytes retrieved is associated with an increase in fertilized oocytes, blastocysts, and cumulative live birth rates, Fertil. Steril. 119 (2023) 762–769,.
[4]
C. Farquhar, J. Marjoribanks, J. Brown, B.C.J.M. Fauser, A. Lethaby, S. Mourad, et al., Management of ovarian stimulation for IVF: narrative review of evidence provided for World Health Organization guidance, Reprod. Biomed. Online 35 (2017) 3–16,.
[5]
P. Kumar, S.F. Sait, A. Sharma, M. Kumar, Ovarian hyperstimulation syndrome, J. Hum. Reprod. Sci. 4 (2011) 70,.
[6]
J.J. Zhang, Z. Merhi, M. Yang, D. Bodri, A. Chavez-Badiola, S. Repping, et al., Minimal stimulation IVF vs conventional IVF: a randomized controlled trial, Am. J. Obstet. Gynecol. 214 (2016) 96.e1–96.e8,.
[7]
S. Karakida, K. Ezoe, J. Fukuda, A. Yabuuchi, T. Kobayashi, K. Kato, Effects of gonadotropin administration on clinical outcomes in clomiphene citrate‐based minimal stimulation cycle IVF, Reprod. Med. Biol. 19 (2019),.
[8]
T. Abe, A. Yabuuchi, K. Ezoe, H. Skaletsky, J. Fukuda, S. Ueno, et al., Success rates in minimal stimulation cycle IVF with clomiphene citrate only, J. Assist. Reprod. Genet. 37 (2020) 297–304,.
[9]
E. Hariton, E.A. Chi, G. Chi, J.R. Morris, J. Braatz, P. Rajpurkar, et al., A machine learning algorithm can optimize the day of trigger to improve in vitro fertilization outcomes, Fertil. Steril. 116 (2021) 1227–1235,.
[10]
J. Hernández-González, O. Valls, A. Torres-Martín, J. Cerquides, Modeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models, Comput. Biol. Med. 150 (2022),.
[11]
[12]
M.C. Inhorn, P. Patrizio, Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century, Hum. Reprod. Update 21 (2015) 411–426,.
[13]
N. Garrido, J. Bellver, J. Remohí, C. Simón, A. Pellicer, Cumulative live-birth rates per total number of embryos needed to reach newborn in consecutive in vitro fertilization (IVF) cycles: a new approach to measuring the likelihood of IVF success, Fertil. Steril. 96 (2011) 40,. 6.
[14]
D. Glujovsky, A.M. Quinteiro Retamar, C.R. Alvarez Sedo, A. Ciapponi, S. Cornelisse, D. Blake, Cleavage‐stage versus blastocyst‐stage embryo transfer in assisted reproductive technology, Cochrane Database Syst. Rev. 2022 (2022),.
[15]
D. Shrestha, X. La, H.L. Feng, Comparison of different stimulation protocols used in in vitro fertilization: a review, Ann. Transl. Med. 3 (2015) 137,. 137.
[16]
H. Maghraby, H. Saleh, I.L. Fourtia, S. Rasheed, M. Elmahdy, A.S. Abdelbadie, et al., The dilemma of the trigger timing in IVF: a review, Middle East Fertil. Soc. J. 29 (1) (2024) 1–14,. 2024;29.
[17]
M. Fanton, D. Sakkas, O. Barash, L. Weckstein, A. Copperman, P. Maeder-York, et al., An interpretable and generalizable machine learning model for optimizing day of trigger during ovarian stimulation, Fertil. Steril. 118 (2022) e44,.
[18]
K. Kuroda, Y. Katagiri, O. Ishihara, Optimal individualization of patient‐oriented ovarian stimulation in Japanese assisted reproductive technology clinics, a review for unique setting with advanced‐age patients, J. Obstet. Gynaecol. Res. 48 (2022),.
[19]
G. Letterie, Artificial intelligence and assisted reproductive technologies: 2023. Ready for prime time? Or not, Fertil. Steril. 120 (2023) 32–37,.
[20]
N. Zaninovic, Z. Rosenwaks, Artificial intelligence in human in vitro fertilization and embryology, Fertil. Steril. 114 (2020) 914–920,.
[21]
H. Kerner, J. Campbell, M. Strickland, Introduction to machine learning, Machine Learning for Planetary Science 1–24 (2022),.
[22]
A.H. Montazeri, S.K. Emami, M.R. Zaghiyan, S. Eslamian, Stochastic learning algorithms, Handbook of HydroInformatics: Volume I: Classic Soft-Computing Techniques, 2023, pp. 385–410,.
[23]
E. Hariton, Z. Pavlovic, M. Fanton, V.S. Jiang, Applications of artificial intelligence in ovarian stimulation: a tool for improving efficiency and outcomes, Fertil. Steril. 120 (2023) 8–16,.
[24]
S. Reuvenny, M. Youngster, A. Luz, R. Hourvitz, E. Maman, M. Baum, et al., An artificial intelligence based approach for selecting the optimal day for triggering in antagonist protocol cycles, Reprod. Biomed. Online (2023),.
[25]
Z. Sabir, S.A. Bhat, H.A. Wahab, M.E. Camargo, G. Abildinova, Z. Zulpykhar, A bio inspired learning scheme for the fractional order kidney function model with neural networks, Chaos, Solit. Fractals 180 (2024),.
[26]
Z. Sabir, S. Ben Said, Q. Al-Mdallal, Bio inspired heuristic computing scheme for the human liver nonlinear model, Heliyon 10 (2024),.
[27]
Z. Sabir, M. Umar, H.A. Wahab, S.A. Bhat, C. Unlu, Heuristic computing performances based Gudermannian neural network to solve the eye surgery corneal model, Appl. Soft Comput. 157 (2024),.
[28]
H. Tatsat, S. Puri, B. Lookabaugh, Machine Learning and Data Science Blueprints for Finance, O'Reilly Media, Inc., 2020.
[29]
G. Letterie, A. MacDonald, Z. Shi, An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions, Reprod. Biomed. Online (2021),.
[30]
I. Souter, F. Sun, H. Zhang, M.P. Diamond, R.S. Legro, R.A. Wild, et al., A personalized medicine approach to ovulation induction/ovarian stimulation: development of a predictive model and online calculator from level-I evidence, Fertil. Steril. 117 (2022) 408–418,.
[31]
E. Cuevas, O. Avalos, P. Díaz, A. Valdivia, M. Pérez, Introducción al Machine Learning con MATLAB, Marcombo, 2021.
[32]
Y. Baştanlar, M. Özuysal, Introduction to machine learning, Methods Mol. Biol. 1107 (2014) 105–128,.
[33]
S. Haykin, Neural Networks and Learning Machines, Pearson Prentice Hall, 2009.
[34]
S. Nematzadeh, F. Kiani, M. Torkamanian-Afshar, N. Aydin, Tuning hyperparameters of machine learning algorithms and deep neural networks using metaheuristics: a bioinformatics study on biomedical and biological cases, Comput. Biol. Chem. 97 (2022),.
[35]
A. Zheng, Evaluating Machine Learning Models, O'Reilly Media, Inc., 2015.
[36]
G. Letterie, A. MacDonald, Z. Shi, An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions, Reprod. Biomed. Online (2021),.
[37]
G. Letterie, A. Mac Donald, Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization, Fertil. Steril. 114 (2020) 1026–1031,.
[38]
M. Fanton, V. Nutting, A. Rothman, P. Maeder-York, E. Hariton, O. Barash, et al., An interpretable machine learning model for individualized gonadotrophin starting dose selection during ovarian stimulation, Reprod. Biomed. Online 45 (2022) 1152–1159,.
[39]
G. Letterie, A. MacDonald, Z. Shi, An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions, RBMO 44 (2022) 254–260,.
[40]
G. Letterie, A. Mac Donald, Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization, Fertil. Steril. 114 (2020) 1026–1031,.
[41]
M. Fanton, V. Nutting, F. Solano, P. Maeder-York, E. Hariton, O. Barash, et al., An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation, Fertil. Steril. 118 (2022) 101–108,.
[42]
E. Hariton, E.A. Chi, G. Chi, J.R. Morris, J. Braatz, P. Rajpurkar, et al., A machine learning algorithm can optimize the day of trigger to improve in vitro fertilization outcomes, Fertil. Steril. 116 (2021) 1227–1235,.
[43]
B.S. Shapiro, M.A. Rasouli, K. Verma, A. Raman, F.C. Garner, M. Aguirre, et al., The effect of ovarian follicle size on oocyte and embryology outcomes, Fertil. Steril. 117 (2022) 1170–1176,.
[44]
R.D. Shirwaikar, U.D. Acharya, K. Makkithaya, S. M, S. Srivastava, U.L.E.S. Lewis, Optimizing neural networks for medical data sets: a case study on neonatal apnea prediction, Artif. Intell. Med. 98 (2019) 59–76,.
[45]
L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32,.
[46]
A. Liaw, M. Wiener, Classification and regression by randomForest, R. News 2 (2002).
[47]
A. Géron, Neural Networks and Deep Learning, O'Reilly Media, Inc., 2018.
[48]
B. Siswoyo, Z.A. Abas, A.N.C. Pee, R. Komalasari, H. Purwanto, E. Satria, et al., Optimization of multi-layer Perceptron in ensemble using random search for bankruptcy prediction, J. Comput. Sci. 19 (2023) 251–260,.
[49]
R. Pal, Chapter 4 - validation methodologies, in: R. Pal (Ed.), Predictive Modeling of Drug Sensitivity, Academic Press, 2017, pp. 83–107,.
[50]
M. Arteaga, M.J. Gacto, M. Galende, J. Alcalá-Fdez, R. Alcalá, Enhancing soft computing techniques to actively address imbalanced regression problems, Expert Syst. Appl. 234 (2023),.
[51]
J. Hernández-Orallo, ROC curves for regression, Pattern Recogn. 46 (2013) 3395–3411,.
[52]
J. Bi, K.P. Bennett, Regression error characteristic curves. Proceedings, Twentieth International Conference on Machine Learning 1 (2003) 43–50.
[53]
M. Fanton, V. Nutting, F. Solano, P. Maeder-York, E. Hariton, O. Barash, et al., An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation, Fertil. Steril. (2022),. 0.
[54]
P.A. Romanski, A. Aluko, P. Bortoletto, R.T. Elias, Z. Rosenwaks, Age-specific blastulation rates in embryo cryopreservation cycles yielding a cryopreserved blastocyst, Fertil. Steril. 116 (2021) e11–e12,.
[55]
B.S. Shapiro, K.S. Richter, D.C. Harris, S.T. Daneshmand, Influence of patient age on the growth and transfer of blastocyst-stage embryos, Fertil. Steril. 77 (2002) 700–705,.
[56]
V. Athanasiou, K. Stefanidis, D. Stavrou, T. Vaxevanoglou, M. Chronopoulou, Influence of advanced age on the blastocyst development rate and pregnancy rate in assisted reproductive technology, Fertil. Steril. 71 (1999) 1144–1146,.
[57]
J.M. Franasiak, E.J. Forman, K.H. Hong, M.D. Werner, K.M. Upham, N.R. Treff, et al., The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening, Fertil. Steril. 101 (2014),.
[58]
P.A. Romanski, A. Aluko, P. Bortoletto, R. Elias, Z. Rosenwaks, Age-specific blastocyst conversion rates in embryo cryopreservation cycles, Reprod. Biomed. Online 45 (2022) 432–439,.
[59]
S. Kahraman, C.P. Cetinkaya, M. Cetinkaya, H. Yelke, Y.K. Colakoglu, M. Aygun, et al., The effect of follicle size and homogeneity of follicular development on the morphokinetics of human embryos, J. Assist. Reprod. Genet. 34 (2017) 895–903,.
[60]
S. Nagai, T. Mabuchi, S. Hirata, T. Shoda, T. Kasai, S. Yokota, et al., Correlation of abnormal mitochondrial distribution in mouse oocytes with reduced developmental competence, Tohoku J. Exp. Med. 210 (2006) 137–144,.
[61]
F. Sánchez, S. Romero, M. De Vos, G. Verheyen, J. Smitz, Human cumulus-enclosed germinal vesicle oocytes from early antral follicles reveal heterogeneous cellular and molecular features associated with in vitro maturation capacity, Hum. Reprod. 30 (2015) 1396–1409,.
[62]
A. Abbara, L.N. Vuong, V.N.A. Ho, S.A. Clarke, L. Jeffers, A.N. Comninos, et al., Follicle size on day of trigger most likely to yield a mature oocyte, Front. Endocrinol. 9 (2018) 25,.
[63]
A. Revelli, G. Martiny, L.D. Piane, C. Benedetto, P. Rinaudo, I. Tur-Kaspa, A critical review of bi-dimensional and three-dimensional ultrasound techniques to monitor follicle growth: do they help improving IVF outcome?, Reprod. Biol. Endocrinol. 12 (2014),.
[64]
B.S. Shapiro, M.A. Rasouli, K. Verma, A. Raman, F.C. Garner, M. Aguirre, et al., The effect of ovarian follicle size on oocyte and embryology outcomes, Fertil. Steril. 117 (2022) 1170–1176,.
[65]
N. Garrido, J. Bellver, J. Remohí, C. Simón, A. Pellicer, Cumulative live-birth rates per total number of embryos needed to reach newborn in consecutive in vitro fertilization (IVF) cycles: a new approach to measuring the likelihood of IVF success, Fertil. Steril. 96 (2011) 40,. 6.
[66]
M. Fanton, V. Nutting, F. Solano, P. Maeder-York, E. Hariton, O. Barash, et al., An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation, Fertil. Steril. 118 (2022) 101–108,.
[67]
E. Hariton, E.A. Chi, G. Chi, J.R. Morris, J. Braatz, P. Rajpurkar, et al., A machine learning algorithm can optimize the day of trigger to improve in vitro fertilization outcomes, Fertil. Steril. 116 (2021) 1227–1235,.
[68]
S. Reuvenny, M. Youngster, A. Luz, R. Hourvitz, E. Maman, M. Baum, et al., An artificial intelligence-based approach for selecting the optimal day for triggering in antagonist protocol cycles, Reprod. Biomed. Online (2023),.
[69]
A. Abbara, L.N. Vuong, V.N.A. Ho, S.A. Clarke, L. Jeffers, A.N. Comninos, et al., Follicle size on day of trigger most likely to yield a mature oocyte, Front. Endocrinol. 9 (2018),.
[70]
B.S. Shapiro, M.A. Rasouli, K. Verma, A. Raman, F.C. Garner, M. Aguirre, et al., The effect of ovarian follicle size on oocyte and embryology outcomes, Fertil. Steril. 117 (2022) 1170–1176,.
[71]
S. Kahraman, C.P. Cetinkaya, M. Cetinkaya, H. Yelke, Y.K. Colakoglu, M. Aygun, et al., The effect of follicle size and homogeneity of follicular development on the morphokinetics of human embryos, J. Assist. Reprod. Genet. 34 (2017) 895,.
[72]
D.H. McCulloh, N. Kutchukhidze, T. Charkviani, T. Zhorzholadze, T. Barbakadze, S. Munné, et al., Follicle size indicates oocyte maturity and blastocyst formation but not blastocyst euploidy following controlled ovarian hyperstimulation of oocyte donors, Hum. Reprod. 35 (2020) 545–556,.
[73]
A. Mohr-Sasson, R. Orvieto, S. Blumenfeld, M. Axelrod, D. Mor-Hadar, L. Grin, et al., The association between follicle size and oocyte development as a function of final follicular maturation triggering, Reprod. Biomed. Online 40 (2020) 887–893,.
[74]
B. Wirleitner, J. Okhowat, L. Vištejnová, M. Králíčková, M. Karlíková, P. Vanderzwalmen, et al., Relationship between follicular volume and oocyte competence, blastocyst development and live-birth rate: optimal follicle size for oocyte retrieval, Ultrasound Obstet. Gynecol. 51 (2018) 118–125,.
[75]
F.M. Wittmaack, D.O. Kreger, L. Blasco, R.W. Tureck, L. Mastroianni, B.A. Lessey, Effect of follicular size on oocyte retrieval, fertilization, cleavage, and embryo quality in in vitro fertilization cycles: a 6-year data collection, Fertil. Steril. 62 (1994) 1205–1210,.
[76]
J.J. Zhang, Z. Merhi, M. Yang, D. Bodri, A. Chavez-Badiola, S. Repping, et al., Minimal stimulation IVF vs conventional IVF: a randomized controlled trial, Am. J. Obstet. Gynecol. 214 (2016) 96.e1–96.e8,.
[77]
S. Teramoto, O. Kato, Minimal ovarian stimulation with clomiphene citrate: a large-scale retrospective study, Reprod. Biomed. Online 15 (2007) 134–148,.
[78]
S. Karakida, K. Ezoe, J. Fukuda, A. Yabuuchi, T. Kobayashi, K. Kato, Effects of gonadotropin administration on clinical outcomes in clomiphene citrate-based minimal stimulation cycle IVF, Reprod. Med. Biol. 19 (2019) 128–134,.
[79]
X. Liang, J. Liang, F. Zeng, Y. Lin, Y. Li, K. Cai, et al., Evaluation of oocyte maturity using artificial intelligence quantification of follicle volume biomarker by three-dimensional ultrasound, Reprod. Biomed. Online 45 (2022) 1197–1206,.
[80]
M.E. Lujan, D.R. Chizen, A.K. Peppin, S. Kriegler, D.A. Leswick, T.G. Bloski, et al., Improving inter-observer variability in the evaluation of ultrasonographic features of polycystic ovaries, Reprod. Biol. Endocrinol. 6 (2008),.
[81]
M. Rosendahl, E. Ernst, P.E. Rasmussen, C.Y. Andersen, True ovarian volume is underestimated by two-dimensional transvaginal ultrasound measurement, Fertil. Steril. 93 (2010) 995–998,.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers in Biology and Medicine
Computers in Biology and Medicine  Volume 179, Issue C
Sep 2024
1424 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 01 September 2024

Author Tags

  1. Artificial intelligence
  2. Machine learning
  3. Artificial neural networks
  4. Multi-layer perceptron
  5. Hyperparameter tuning
  6. In vitro fertilization
  7. Minimal ovarian stimulation
  8. Useable blastocyst
  9. Trigger timing

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media