Nothing Special   »   [go: up one dir, main page]

skip to main content
review-article

Generative adversarial networks in medical image segmentation: : A review

Published: 01 January 2022 Publication History

Abstract

Purpose

Since Generative Adversarial Network (GAN) was introduced into the field of deep learning in 2014, it has received extensive attention from academia and industry, and a lot of high-quality papers have been published. GAN effectively improves the accuracy of medical image segmentation because of its good generating ability and capability to capture data distribution. This paper introduces the origin, working principle, and extended variant of GAN, and it reviews the latest development of GAN-based medical image segmentation methods.

Method

To find the papers, we searched on Google Scholar and PubMed with the keywords like “segmentation”, “medical image”, and “GAN (or generative adversarial network)”. Also, additional searches were performed on Semantic Scholar, Springer, arXiv, and the top conferences in computer science with the above keywords related to GAN.

Results

We reviewed more than 120 GAN-based architectures for medical image segmentation that were published before September 2021. We categorized and summarized these papers according to the segmentation regions, imaging modality, and classification methods. Besides, we discussed the advantages, challenges, and future research directions of GAN in medical image segmentation.

Conclusions

We discussed in detail the recent papers on medical image segmentation using GAN. The application of GAN and its extended variants has effectively improved the accuracy of medical image segmentation. Obtaining the recognition of clinicians and patients and overcoming the instability, low repeatability, and uninterpretability of GAN will be an important research direction in the future.

Graphical abstract

Display Omitted

Highlights

A systematic review on medical image segmentation based on GAN is provided.
The origin, working principle and extended variant of GAN are introduced.
More than 120 papers are categorized and summarized in different ways.
The challenge and future research of medical image segmentation using GAN are discussed.

References

[1]
G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A. Van Der Laak, B. Van Ginneken, C.I. Sánchez, A survey on deep learning in medical image analysis, Med. Image Anal. 42 (2017) 60–88.
[2]
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.
[3]
S. Kazeminia, C. Baur, A. Kuijper, B. van Ginneken, N. Navab, S. Albarqouni, A. Mukhopadhyay, GANs for medical image analysis, Artif. Intell. Med. 109 (2020) 1–40,.
[4]
X. Yi, E. Walia, P. Babyn, Generative adversarial network in medical imaging: a review, Med. Image Anal. 58 (2019),.
[5]
A.L. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. van Ginneken, A. Kopp-Schneider, B.A. Landman, G. Litjens, B. Menze, O. Ronneberger, R.M. Summers, P. Bilic, P.F. Christ, R.K.G. Do, M. Gollub, J. Golia-Pernicka, S.H. Heckers, W.R. Jarnagin, M.K. McHugo, S. Napel, E. Vorontsov, L. Maier-Hein, M.J. Cardoso, A Large Annotated Medical Image Dataset for the Development and Evaluation of Segmentation Algorithms, 2019, http://arxiv.org/abs/1902.09063.
[6]
M. Mirza, S. Osindero, Conditional generative adversarial nets, ArXiv Prepr. ArXiv1411.1784 (2014).
[7]
A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, ArXiv Prepr. ArXiv1511.06434 (2015).
[8]
X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel, Infogan: interpretable representation learning by information maximizing generative adversarial nets, in: Adv. Neural Inf. Process. Syst., 2016, pp. 2172–2180.
[9]
A. Odena, C. Olah, J. Shlens, Conditional image synthesis with auxiliary classifier gans, Int. Conf. Mach. Learn. (2017) 2642–2651.
[10]
M. Arjovsky, S. Chintala, L. Bottou, Wasserstein gan, ArXiv Prepr. ArXiv1701.07875 (2017).
[11]
J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, Proc. IEEE Int. Conf. Comput. Vis. (2017) 2223–2232.
[12]
P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 1125–1134.
[13]
O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Int. Conf. Med. Image Comput. Comput. Interv., Springer, 2015, pp. 234–241.
[14]
A. Brock, J. Donahue, K. Simonyan, Large scale gan training for high fidelity natural image synthesis, ArXiv Prepr. ArXiv1809.11096 (2018).
[15]
T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial networks, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 4401–4410.
[16]
P. Luc, C. Couprie, S. Chintala, J. Verbeek, Semantic segmentation using adversarial networks, ArXiv Prepr. ArXiv1611.08408 (2016).
[17]
Z. Li, Y. Wang, J. Yu, Brain tumor segmentation using an adversarial network, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 10670 LNCS (2018) 123–132,.
[18]
M. Rezaei, K. Harmuth, W. Gierke, T. Kellermeier, M. Fischer, H. Yang, C. Meinel, A conditional adversarial network for semantic segmentation of brain tumor, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 10670 LNCS (2018) 241–252,.
[19]
Y. Xue, T. Xu, H. Zhang, L.R. Long, X. Huang, SegAN: adversarial network with multi-scale L 1 loss for medical image segmentation, Neuroinformatics 16 (2018) 383–392,.
[20]
W. Yuan, J. Wei, J. Wang, Q. Ma, T. Tasdizen, Unified attentional generative adversarial network for brain tumor segmentation from multimodal unpaired images, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 11766 LNCS (2019) 229–237,.
[21]
S. Nema, A. Dudhane, S. Murala, S. Naidu, RescueNet: an unpaired GAN for brain tumor segmentation, Biomed. Signal Process Control 55 (2020) 101641,.
[22]
Y. Li, Y. Chen, Y. Shi, Brain tumor segmentation using 3D generative adversarial networks, Int. J. Pattern Recogn. Artif. Intell. 35 (2021),.
[23]
G.M. Conte, A.D. Weston, D.C. Vogelsang, K.A. Philbrick, J.C. Cai, Erratum: generative adversarial networks to synthesize missing T1 and FLAIR MRI sequences for use in a multisequence brain tumor segmentation model, Radiology 300 (2021) E319,. Radiology (2021) 299:2 (313–323) DOI: 10.1148/radiol.2021203786.
[24]
G. Cheng, H. Ji, L. He, Correcting and reweighting false label masks in brain tumor segmentation, Med. Phys. 48 (2021) 169–177,.
[25]
P. Moeskops, M. Veta, M.W. Lafarge, K.A.J. Eppenhof, J.P.W. Pluim, Adversarial training and dilated convolutions for brain MRI segmentation, in: Deep Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support, Springer, 2017, pp. 56–64.
[26]
A.K. Mondal, J. Dolz, C. Desrosiers, Few-shot 3d multi-modal medical image segmentation using generative adversarial learning, ArXiv Prepr. ArXiv1810. 12241 (2018).
[27]
K.T. Oh, S. Lee, H. Lee, M. Yun, S.K. Yoo, Semantic segmentation of white matter in FDG-PET using generative adversarial network, J. Digit. Imag. (2020) 1–10.
[28]
P.L. Delisle, B. Anctil-Robitaille, C. Desrosiers, H. Lombaert, Realistic image normalization for multi-Domain segmentation, Med. Image Anal 74 (2021) 102191,.
[29]
M. Zhao, L. Wang, J. Chen, D. Nie, Y. Cong, S. Ahmad, A. Ho, P. Yuan, S.H. Fung, H.H. Deng, Craniomaxillofacial bony structures segmentation from MRI with deep-supervision adversarial learning, in: Int. Conf. Med. Image Comput. Comput. Interv., Springer, 2018, pp. 720–727.
[30]
X. Chen, C. Lian, L. Wang, H. Deng, S.H. Fung, D. Nie, K.-H. Thung, P.-T. Yap, J. Gateno, J.J. Xia, One-Shot generative adversarial learning for MRI segmentation of craniomaxillofacial bony structures, IEEE Trans. Med. Imag. 39 (2019) 787–796.
[31]
Y. Shi, K. Cheng, Z. Liu, Hippocampal subfields segmentation in brain MR images using generative adversarial networks, Biomed. Eng. Online 18 (2019) 1–12.
[32]
Q. Delannoy, C.H. Pham, C. Cazorla, C. Tor-Díez, G. Dollé, H. Meunier, N. Bednarek, R. Fablet, N. Passat, F. Rousseau, SegSRGAN: super-resolution and segmentation using generative adversarial networks — application to neonatal brain MRI, Comput. Biol. Med. 120 (2020) 103755,.
[33]
B. Li, X. You, J. Wang, Q. Peng, S. Yin, R. Qi, Q. Ren, Z. Hong, IAS‐NET: joint Intra‐classly Adaptive GAN and Segmentation network for unsupervised cross‐domain in Neonatal Brain MRI segmentation, Med. Phys. (2021),.
[34]
V. Alex, M.S. Kp, S.S. Chennamsetty, G. Krishnamurthi, Generative adversarial networks for brain lesion detection, in: Med. Imaging 2017 Image Process, International Society for Optics and Photonics, 2017, p. 101330G.
[35]
K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, B. Glocker, Unsupervised domain adaptation in brain lesion segmentation with adversarial networks, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)., 10265, LNCS, 2017, pp. 597–609,.
[36]
H. Kuang, B.K. Menon, W. Qiu, Automated stroke lesion segmentation in non-contrast CT scans using dense multi-path contextual generative adversarial network, Phys. Med. Biol. 65 (2020),.
[37]
T. Finck, H. Li, L. Grundl, P. Eichinger, M. Bussas, M. Mühlau, B. Menze, B. Wiestler, Deep-learning generated synthetic double inversion recovery images improve multiple sclerosis lesion detection, Invest. Radiol. 55 (2020) 318–323,.
[38]
F. La Rosa, T. Yu, G. Barquero, J.P. Thiran, C. Granziera, M. Bach Cuadra, MPRAGE to MP2RAGE UNI translation via generative adversarial network improves the automatic tissue and lesion segmentation in multiple sclerosis patients, Comput. Biol. Med. 132 (2021),.
[39]
A. Lahiri, K. Ayush, P. Kumar Biswas, P. Mitra, Generative adversarial learning for reducing manual annotation in semantic segmentation on large scale miscroscopy images: automated vessel segmentation in retinal fundus image as test case, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Work., 2017, pp. 42–48.
[40]
D. Mahapatra, B. Bozorgtabar, S. Hewavitharanage, R. Garnavi, Image super resolution using generative adversarial networks and local saliency maps for retinal image analysis, in: Int. Conf. Med. Image Comput. Comput. Interv., Springer, 2017, pp. 382–390.
[41]
M. Javanmardi, T. Tasdizen, Domain adaptation for biomedical image segmentation using adversarial training, Proc. Int. Symp. Biomed. Imaging. (2018) 554–558,. 2018-April.
[42]
T. Iqbal, H. Ali, Generative adversarial network for medical images (MI-GAN), J. Med. Syst. 42 (2018) 231.
[43]
J. Son, S.J. Park, K.H. Jung, Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks, J. Digit. Imag. 32 (2019) 499–512,.
[44]
T. Yang, T. Wu, L. Li, C. Zhu, SUD-GAN: Deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation, J. Digit. Imag. (2020) 1–12.
[45]
T. Schlegl, P. Seeböck, S.M. Waldstein, U. Schmidt-Erfurth, G. Langs, Unsupervised anomaly detection with generative adversarial networks to guide marker discovery, in: Int. Conf. Inf. Process. Med. Imaging, Springer, 2017, pp. 146–157.
[46]
H. Jiang, X. Chen, F. Shi, Y. Ma, D. Xiang, L. Ye, J. Su, Z. Li, Q. Chen, Y. Hua, X. Xu, W. Zhu, Y. Fan, Improved cGAN based linear lesion segmentation in high myopia ICGA images, Biomed. Opt Express 10 (2019) 2355,.
[47]
T. Schlegl, P. Seeböck, S.M. Waldstein, G. Langs, U. Schmidt-Erfurth, f-AnoGAN, Fast unsupervised anomaly detection with generative adversarial networks, Med. Image Anal. 54 (2019) 30–44,.
[48]
J. Wang, W. Li, Y. Chen, W. Fang, W. Kong, Y. He, G. Shi, Weakly supervised anomaly segmentation in retinal OCT images using an adversarial learning approach, Biomed. Opt Express 12 (2021) 4713,.
[49]
S.M. Shankaranarayana, K. Ram, K. Mitra, M. Sivaprakasam, Joint optic disc and cup segmentation using fully convolutional and adversarial networks, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 10554 LNCS (2017) 168–176,.
[50]
S. Wang, L. Yu, X. Yang, C.-W. Fu, P.-A. Heng, Patch-based output space adversarial learning for joint optic disc and cup segmentation, IEEE Trans. Med. Imag. 38 (2019) 2485–2495.
[51]
S. Kadambi, Z. Wang, E. Xing, WGAN domain adaptation for the joint optic disc-and-cup segmentation in fundus images, Int. J. Comput. Assist. Radiol. Surg. (2020).
[52]
L. Luo, D. Xue, F. Pan, X. Feng, Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning, Int. J. Comput. Assist. Radiol. Surg. 16 (2021) 905–914,.
[53]
X. Liu, J. Cao, T. Fu, Z. Pan, W. Hu, K. Zhang, J. Liu, Semi-supervised automatic segmentation of layer and fluid region in retinal optical coherence tomography images using adversarial learning, IEEE Access 7 (2019) 3046–3061,.
[54]
R. Tennakoon, A.K. Gostar, R. Hoseinnezhad, A. Bab-Hadiashar, Retinal fluid segmentation in OCT images using adversarial loss based convolutional neural networks, Proc. Int. Symp. Biomed. Imaging. (2018) 1436–1440,. 2018-April.
[55]
H. Jiang, Y. Ma, W. Zhu, Y. Fan, Y. Hua, Q. Chen, X. Chen, cGAN-based lacquer cracks segmentation in ICGA image, in: Comput. Pathol. Ophthalmic Med. Image Anal., Springer, 2018, pp. 228–235.
[56]
J. Ouyang, T.S. Mathai, K. Lathrop, J. Galeotti, Accurate tissue interface segmentation via adversarial pre-segmentation of anterior segment OCT images, Biomed. Opt Express 10 (2019) 5291,.
[57]
E. Yıldız, A.T. Arslan, A.Y. Taş, A.F. Acer, S. Demir, A. Şahin, D.E. Barkana, Generative adversarial network based automatic segmentation of corneal subbasal nerves on in vivo confocal microscopy images, Transl. Vis. Sci. Technol. 10 (2021) 1–13,.
[58]
W. Zhu, X. Xiang, T.D. Tran, X. Xie, Adversarial Deep Structural Networks for Mammographic Mass Segmentation, 2016, pp. 1–8,.
[59]
T. Shen, C. Gou, F.Y. Wang, Z. He, W. Chen, Learning from adversarial medical images for X-ray breast mass segmentation, Comput. Methods Progr. Biomed. 180 (2019) 1–13,.
[60]
L. Han, Y. Huang, H. Dou, S. Wang, S. Ahamad, H. Luo, Q. Liu, J. Fan, J. Zhang, Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network, Comput. Methods Progr. Biomed. 189 (2020) 105275,.
[61]
J. Xing, Z. Li, B. Wang, Y. Qi, B. Yu, F.G. Zanjani, A. Zheng, R. Duits, T. Tan, Lesion segmentation in ultrasound using semi-pixel-wise cycle generative adversarial nets, IEEE ACM Trans. Comput. Biol. Bioinf (2020).
[62]
X. Ma, J. Wang, X. Zheng, Z. Liu, W. Long, Y. Zhang, et al., Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks, Phys. Med. Biol. 65 (2020) 105006.
[63]
Y. Li, G. Zhao, Q. Zhang, Y. Lin, M. Wang, SAP-cGAN: adversarial learning for breast mass segmentation in digital mammogram based on superpixel average pooling, Med. Phys. 48 (2021) 1157–1167,.
[64]
C. Chen, Q. Dou, H. Chen, P.-A. Heng, Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest x-ray segmentation, in: Int. Work. Mach. Learn. Med. Imaging, Springer, 2018, pp. 143–151.
[65]
J. Tan, L. Jing, Y. Huo, L. Li, O. Akin, Y. Tian, LGAN: lung segmentation in CT scans using generative adversarial network, Comput. Med. Imag. Graph. 87 (2021) 101817,.
[66]
B. Stiehl, M. Lauria, K. Singhrao, J. Goldin, I. Barjaktarevic, D. Low, A. Santhanam, Scalable quorum-based deep neural networks with adversarial learning for automated lung lobe segmentation in fast helical free-breathing CTs, Int. J. Comput. Assist. Radiol. Surg. (2021),.
[67]
D. Jin, Z. Xu, Y. Tang, A.P. Harrison, D.J. Mollura, CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation, in: Int. Conf. Med. Image Comput. Comput. Interv., Springer, 2018, pp. 732–740.
[68]
S. Jain, S. Indora, D.K. Atal, Lung nodule segmentation using salp shuffled shepherd optimization algorithm-based generative adversarial network, Comput. Biol. Med. 137 (2021) 104811,.
[69]
W. Dai, N. Dong, Z. Wang, X. Liang, H. Zhang, E.P. Xing, Scan: Structure Correcting Adversarial Network for Organ Segmentation in Chest X-Rays, Springer International Publishing, 2018,.
[70]
R. Trullo, C. Petitjean, B. Dubray, S. Ruan, Multiorgan segmentation using distance-aware adversarial networks, J. Med. Imaging 6 (2019) 14001.
[71]
X. Dong, Y. Lei, T. Wang, M. Thomas, L. Tang, W.J. Curran, T. Liu, X. Yang, Automatic multiorgan segmentation in thorax CT images using U‐net‐GAN, Med. Phys. 46 (2019) 2157–2168.
[72]
Y. Guo, W. Zhao, S. Li, Y. Zhang, Y. Lu, Automatic segmentation of the pectoral muscle based on boundary identification and shape prediction, Phys. Med. Biol. 65 (2020),.
[73]
Q. Dou, C. Ouyang, C. Chen, H. Chen, P.A. Heng, Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss, IJCAI Int. Jt. Conf. Artif. Intell. (2018) 691–697,. 2018-July.
[74]
M. Rezaei, H. Yang, C. Meinel, Whole heart and great vessel segmentation with context-aware of generative adversarial networks, in: Bild. Für Die Medizin 2018, Springer, 2018, pp. 353–358.
[75]
Z. Zhang, L. Yang, Y. Zheng, Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 9242–9251.
[76]
T. Joyce, A. Chartsias, S.A. Tsaftaris, Deep Multi-Class Segmentation without Ground-Truth Labels, 2018.
[77]
S. Dong, G. Luo, K. Wang, S. Cao, A. Mercado, O. Shmuilovich, H. Zhang, S. Li, VoxelAtlasGAN: 3D left ventricle segmentation on echocardiography with atlas guided generation and voxel-to-voxel discrimination, in: Int. Conf. Med. Image Comput. Comput. Interv., Springer, 2018, pp. 622–629.
[78]
A. Chartsias, T. Joyce, G. Papanastasiou, S. Semple, M. Williams, D. Newby, R. Dharmakumar, S.A. Tsaftaris, Factorised Spatial Representation Learning: Application in Semi-supervised Myocardial Segmentation, Springer International Publishing, 2018,.
[79]
J. Liu, H. Xie, S. Zhang, L. Gu, Multi-sequence myocardium segmentation with cross-constrained shape and neural network-based initialization, Comput. Med. Imag. Graph. 71 (2019) 49–57,.
[80]
R.R. Upendra, S. Dangi, C.A. Linte, An adversarial network architecture using 2D U-net models for segmentation of left ventricle from cine cardiac MRI, Funct. Imag. Model Heart 11504 (2019 Jun) 415–424,.
[81]
C. Xu, J. Howey, P. Ohorodnyk, M. Roth, H. Zhang, S. Li, Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning, Med. Image Anal. 59 (2020) 101568,.
[82]
C. Decourt, L. Duong, Semi-supervised generative adversarial networks for the segmentation of the left ventricle in pediatric MRI, Comput. Biol. Med. 123 (2020) 103884.
[83]
X. Shi, T. Du, S. Chen, H. Zhang, C. Guan, B. Xu, UENet: a novel generative adversarial network for angiography image segmentation, in: 2020 42nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., IEEE, 2020, pp. 1612–1615.
[84]
H. Cui, C. Yuwen, L. Jiang, Y. Xia, Y. Zhang, Bidirectional cross-modality unsupervised domain adaptation using generative adversarial networks for cardiac image segmentation, Comput. Biol. Med. 136 (2021) 104726,.
[85]
H. Wu, X. Lu, B. Lei, Z. Wen, Automated left ventricular segmentation from cardiac magnetic resonance images via adversarial learning with multi-stage pose estimation network and co-discriminator, Med. Image Anal. 68 (2021) 101891,.
[86]
X. Yang, Y. Zhang, B. Lo, D. Wu, H. Liao, Y.T. Zhang, DBAN: adversarial network with multi-scale features for cardiac MRI segmentation, IEEE J. Biomed. Heal. Inf. 25 (2021),. 2018–2028.
[87]
J. Chen, G. Yang, H. Khan, H. Zhang, Y. Zhang, S. Zhao, R. Mohiaddin, T. Wong, D. Firmin, J. Keegan, JAS-GAN: Generative adversarial network based joint atrium and scar segmentation on unbalanced atrial targets, IEEE J. Biomed. Heal. Informatics. 2194 (2021) 1–13,.
[88]
A. Gilbert, M. Marciniak, C. Rodero, P. Lamata, E. Samset, K. McLeod, Generating synthetic labeled data from existing anatomical models: an example with echocardiography segmentation, IEEE Trans. Med. Imag. 40 (2021) 2783–2794,.
[89]
D. Yang, D. Xu, S.K. Zhou, B. Georgescu, M. Chen, S. Grbic, D. Metaxas, D. Comaniciu, Automatic liver segmentation using an adversarial image-to-image network, Int. Conf. Med. Image Comput. Comput. Interv. (2017) 507–515,.
[90]
B. Kim, J.C. Ye, Cycle-consistent Adversarial Network with Polyphase U-Nets for Liver Lesion Segmentation, 2018.
[91]
Y. Huo, Z. Xu, S. Bao, C. Bermudez, A.J. Plassard, Y. Yao, J. Liu, A. Assad, R.G. Abramson, B.A. Landman, Splenomegaly Segmentation Using Global Convolutional Kernels and Conditional Generative Adversarial Networks, vol. 8, 2018,.
[92]
Y. Huo, Z. Xu, S. Bao, A. Assad, R.G. Abramson, B.A. Landman, Adversarial synthesis learning enables segmentation without target modality ground truth, Proc. - Int. Symp. Biomed. Imaging. (2018) 1217–1220,. 2018-April.
[93]
X. Liu, S. Guo, H. Zhang, K. He, S. Mu, Y. Guo, X. Li, Accurate colorectal tumor segmentation for CT scans based on the label assignment generative adversarial network, Med. Phys. 46 (2019) 3532–3542.
[94]
J.M. Poomeshwaran, K.S. Santhosh, K. Ram, J. Joseph, M. Sivaprakasam, Polyp segmentation using generative adversarial network, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. (2019) 7201–7204,.
[95]
Y. Ruan, D. Li, H. Marshall, T. Miao, T. Cossetto, I. Chan, O. Daher, F. Accorsi, A. Goela, S. Li, MB-FSGAN: Joint segmentation and quantification of kidney tumor on CT by the multi-branch feature sharing generative adversarial network, Med. Image Anal. (2020) 101721.
[96]
L. Huang, M. Li, S. Gou, X. Zhang, K. Jiang, Automated segmentation method for low field 3D stomach MRI using transferred learning image enhancement network, BioMed Res. Int. 2021 (2021).
[97]
M. Li, F. Lian, C. Wang, S. Guo, Dual adversarial convolutional networks with multilevel cues for pancreatic segmentation, Phys. Med. Biol. 66 (2021) 175025,.
[98]
V. Sandfort, K. Yan, P.J. Pickhardt, R.M. Summers, Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks, Sci. Rep. 9 (2019) 1–9,.
[99]
P.H. Conze, A.E. Kavur, E. Cornec-Le Gall, N.S. Gezer, Y. Le Meur, M.A. Selver, F. Rousseau, Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks, Artif. Intell. Med. 117 (2021) 102109,.
[100]
S. Kohl, D. Bonekamp, H.-P. Schlemmer, K. Yaqubi, M. Hohenfellner, B. Hadaschik, J.-P. Radtke, K. Maier-Hein, Adversarial Networks for the Detection of Aggressive Prostate Cancer, 2017, ArXiv Prepr. ArXiv1702.
[101]
H. Jia, Y. Xia, Y. Song, D. Zhang, H. Huang, Y. Zhang, W. Cai, 3D APA-Net: 3D adversarial pyramid anisotropic convolutional network for prostate segmentation in MR images, IEEE Trans. Med. Imag. 39 (2019) 447–457.
[102]
W. Wang, G. Wang, X. Wu, X. Ding, X. Cao, L. Wang, J. Zhang, P. Wang, Automatic segmentation of prostate magnetic resonance imaging using generative adversarial networks, Clin. Imag. 70 (2021) 1–9,.
[103]
C.N.E. Kan, T. Gilat-Schmidt, D.H. Ye, Enhancing reproductive organ segmentation in pediatric CT via adversarial learning, 1, 2021, p. 31,.
[104]
S. Sultana, A. Robinson, D.Y. Song, J. Lee, CNN-based Hierarchical Coarse-To-Fine Segmentation of Pelvic CT Images for Prostate Cancer Radiotherapy, 2020, p. 53,.
[105]
E. Brion, J. Léger, A.M. Barragán-Montero, N. Meert, J.A. Lee, B. Macq, Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam CT, Comput. Biol. Med. 131 (2021),.
[106]
Z. Zhang, T. Zhao, H. Gay, W. Zhang, B. Sun, ARPM-net: a novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images, Med. Phys. 48 (2021) 227–237,.
[107]
Y. Lei, T. Wang, S. Tian, Y. Fu, P. Patel, A.B. Jani, W.J. Curran, T. Liu, X. Yang, Male pelvic CT multi-organ segmentation using synthetic MRI-aided dual pyramid networks, Phys. Med. Biol. 66 (2021),.
[108]
Z. Han, B. Wei, A. Mercado, S. Leung, S. Li, Spine-GAN: semantic segmentation of multiple spinal structures, Med. Image Anal. 50 (2018) 23–35,.
[109]
A. Sekuboyina, M. Rempfler, J. Kukačka, G. Tetteh, A. Valentinitsch, J.S. Kirschke, B.H. Menze, Btrfly net: vertebrae labelling with energy-based adversarial learning of local spine prior, in: Int. Conf. Med. Image Comput. Comput. Interv., Springer, 2018, pp. 649–657.
[110]
F. Liu, SUSAN: segment unannotated image structure using adversarial network, Magn. Reson. Med. 81 (2019) 3330–3345,.
[111]
S. Gaj, M. Yang, K. Nakamura, X. Li, Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks, Magn. Reson. Med. 84 (2020) 437–449,.
[112]
D.A. Kessler, J.W. MacKay, V.A. Crowe, F.M.D. Henson, M.J. Graves, F.J. Gilbert, J.D. Kaggie, The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs, Comput. Med. Imag. Graph. 86 (2020) 101793.
[113]
Q. Wei, J. Han, Y. Jia, L. Zhu, S. Zhang, Y. Lu, B. Yang, S. Tang, An approach for fully automatic femoral neck-shaft angle evaluation on radiographs, Rev. Sci. Instrum. 91 (2020),.
[114]
A.Z. Alsinan, V.M. Patel, I. Hacihaliloglu, Bone shadow segmentation from ultrasound data for orthopedic surgery using GAN, Int. J. Comput. Assist. Radiol. Surg. 15 (2020) 1477–1485.
[115]
H. Gong, J. Liu, S. Li, B. Chen, Axial-SpineGAN: simultaneous segmentation and diagnosis of multiple spinal structures on axial magnetic resonance imaging images, Phys. Med. Biol. 66 (2021),.
[116]
Y. Zhang, S. Miao, T. Mansi, R. Liao, Task driven generative modeling for unsupervised domain adaptation: application to x-ray image segmentation, in: Int. Conf. Med. Image Comput. Comput. Interv., Springer, 2018, pp. 599–607.
[117]
N. Tong, S. Gou, S. Yang, M. Cao, K. Sheng, Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low‐field MR images, Med. Phys. 46 (2019) 2669–2682.
[118]
J. Cai, Z. Zhang, L. Cui, Y. Zheng, L. Yang, Towards cross-modal organ translation and segmentation: a cycle- and shape-consistent generative adversarial network, Med. Image Anal. 52 (2019) 174–184,.
[119]
S. Pang, A. Du, M.A. Orgun, Z. Yu, Y. Wang, Y. Wang, G. Liu, CTumorGAN: a unified framework for automatic computed tomography tumor segmentation, Eur. J. Nucl. Med. Mol. Imag. (2020) 1–21.
[120]
W. Yuan, J. Wei, J. Wang, Q. Ma, T. Tasdizen, Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images, Med. Image Anal. 64 (2020) 101731,.
[121]
L. Wang, D. Guo, G. Wang, S. Zhang, Annotation-efficient learning for medical image segmentation based on noisy pseudo labels and adversarial learning, IEEE Trans. Med. Imag. (2020).
[122]
L. Liu, Z. Zhang, S. Li, K. Ma, Y. Zheng, S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation, Med. Image Anal 74 (2021) 102214,.
[123]
X. Dai, Y. Lei, T. Wang, A.H. Dhabaan, M. McDonald, J.J. Beitler, W.J. Curran, J. Zhou, T. Liu, X. Yang, Head-and-neck organs-at-risk auto-delineation using dual pyramid networks for CBCT-guided adaptive radiotherapy, Phys. Med. Biol. 66 (2021),.
[124]
X. Chen, C. Lian, L. Wang, H. Deng, T. Kuang, S.H. Fung, J. Gateno, D. Shen, J.J. Xia, P.T. Yap, Diverse data augmentation for learning image segmentation with cross-modality annotations, Med. Image Anal. 71 (2021) 102060,.
[125]
S.K. Sadanandan, J. Karlsson, C. Wählby, Spheroid segmentation using multiscale deep adversarial networks, in: Proc. 2017 IEEE Int. Conf. Comput. Vis. Work. ICCVW, 2017, pp. 36–41,. 2017. 2018-January.
[126]
Y. Zhang, L. Yang, J. Chen, M. Fredericksen, D.P. Hughes, D.Z. Chen, Deep adversarial networks for biomedical image segmentation utilizing unannotated images, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 10435 LNCS (2017) 408–416,.
[127]
A. Arbelle, T.R. Raviv, Microscopy cell segmentation via adversarial neural networks, in: 2018 IEEE 15th Int. Symp. Biomed. Imaging (ISBI 2018), IEEE, 2018, pp. 645–648.
[128]
M. Majurski, P. Manescu, S. Padi, N. Schaub, N. Hotaling, C. Simon Jr., P. Bajcsy, Cell image segmentation using generative adversarial networks, transfer learning, and augmentations, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Work. (2019) 0.
[129]
F. Mahmood, D. Borders, R. Chen, G.N. McKay, K.J. Salimian, A. Baras, N.J. Durr, Deep adversarial training for multi-organ nuclei segmentation in histopathology images, IEEE Trans. Med. Imag. (2019).
[130]
M. Gadermayr, L. Gupta, V. Appel, P. Boor, B.M. Klinkhammer, D. Merhof, Generative adversarial networks for facilitating stain-independent supervised and unsupervised segmentation: a study on kidney histology, IEEE Trans. Med. Imag. 38 (2019) 2293–2302,.
[131]
Y. Guo, Q. Wang, O. Krupa, J. Stein, G. Wu, K. Bradford, A. Krishnamurthy, Cross modality microscopy segmentation via adversarial adaptation, Bioinforma. Biomed. Eng. IWBBIO 2019. Lect. Notes Comput. Sci. (2019) 469–478,.
[132]
T. de Bel, J.M. Bokhorst, J. van der Laak, G. Litjens, Residual cyclegan for robust domain transformation of histopathological tissue slides, Med. Image Anal. 70 (2021) 102004,.
[133]
J. Liu, C. Shen, N. Aguilera, C. Cukras, R.B. Hufnagel, W.M. Zein, T. Liu, J. Tam, Active cell appearance model induced generative adversarial networks for annotation-efficient cell segmentation and identification on adaptive optics retinal images, IEEE Trans. Med. Imag. (2021).
[134]
C. Yang, X. Zhou, W. Zhu, D. Xiang, Z. Chen, J. Yuan, X. Chen, F. Shi, Multi-discriminator adversarial convolutional network for nerve fiber segmentation in confocal corneal microscopy images, IEEE J. Biomed. Heal. Inf. 2194 (2021),. 1–1.
[135]
S. Izadi, Z. Mirikharaji, J. Kawahara, G. Hamarneh, Generative adversarial networks to segment skin lesions, in: 2018 IEEE 15th Int. Symp. Biomed. Imaging (ISBI 2018), IEEE, 2018, pp. 881–884.
[136]
Y. Xue, T. Xu, X. Huang, Adversarial learning with multi-scale loss for skin lesion segmentation, Proc. Int. Symp. Biomed. Imaging (2018) 859–863,. 2018-April.
[137]
B. Lei, Z. Xia, F. Jiang, X. Jiang, Z. Ge, Y. Xu, J. Qin, S. Chen, T. Wang, S. Wang, Skin lesion segmentation via generative adversarial networks with dual discriminators, Med. Image Anal. (2020) 101716.
[138]
X. Hu, R. Guo, J. Chen, H. Li, D. Waldmannstetter, Y. Zhao, B. Li, K. Shi, B. Menze, Coarse-to-Fine adversarial networks and zone-based uncertainty analysis for NK/T-cell lymphoma segmentation in CT/PET images, IEEE J. Biomed. Heal. Inf. (2020).
[139]
C. Wang, M. Gan, M. Zhang, D. Li, Adversarial convolutional network for esophageal tissue segmentation on OCT images, Biomed. Opt Express 11 (2020) 3095,.
[140]
M. Gadermayr, K. Li, M. Müller, D. Truhn, N. Krämer, D. Merhof, B. Gess, Domain-specific data augmentation for segmenting MR images of fatty infiltrated human thighs with neural networks, J. Magn. Reson. Imag. 49 (2019) 1676–1683,.
[141]
D. Nishiyama, H. Iwasaki, T. Taniguchi, D. Fukui, M. Yamanaka, T. Harada, H. Yamada, Deep generative models for automated muscle segmentation in computed tomography scanning, PLoS One 16 (2021),.
[142]
Y. Qin, H. Zheng, X. Huang, J. Yang, Y. Zhu, Pulmonary nodule segmentation with CT sample synthesis using adversarial networks, Med. Phys. 46 (2019) 1218–1229.
[143]
Y. Chi, L. Bi, J. Kim, D. Feng, A. Kumar, Controlled synthesis of dermoscopic images via a new color labeled generative style transfer network to enhance melanoma segmentation, in: 2018 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc, IEEE, 2018, pp. 2591–2594.
[144]
Y. Lei, X. Dong, Z. Tian, Y. Liu, S. Tian, T. Wang, X. Jiang, P. Patel, A.B. Jani, H. Mao, CT prostate segmentation based on synthetic MRI‐aided deep attention fully convolution network, Med. Phys. 47 (2020) 530–540.
[145]
S. Aida, J. Okugawa, S. Fujisaka, T. Kasai, H. Kameda, T. Sugiyama, Deep learning of cancer stem cell morphology using conditional generative adversarial networks, Biomolecules 10 (2020) 931.
[146]
T. Goel, R. Murugan, S. Mirjalili, D.K. Chakrabartty, Automatic screening of COVID-19 using an optimized generative adversarial network, Cognit. Comput. (2021) 1–16.
[147]
J. Rasheed, A.A. Hameed, C. Djeddi, A. Jamil, F. Al-Turjman, A machine learning-based framework for diagnosis of COVID-19 from chest X-ray images, Interdiscipl. Sci. Comput. Life Sci. 13 (2021) 103–117.
[148]
S. Karakanis, G. Leontidis, Lightweight deep learning models for detecting COVID-19 from chest X-ray images, Comput. Biol. Med. 130 (2021) 104181.
[149]
Y. Jiang, H. Chen, M.H. Loew, H. Ko, COVID-19 CT image synthesis with a conditional generative adversarial network, IEEE J. Biomed. Heal. Inf. (2020).
[150]
M. Loey, G. Manogaran, N.E.M. Khalifa, A deep transfer learning model with classical data augmentation and cgan to detect covid-19 from chest ct radiography digital images, Neural Comput. Appl. (2020) 1–13.
[151]
Q. Zhang, Z. Chen, G. Liu, W. Zhang, Q. Du, J. Tan, Q. Gao, Artificial intelligence clinicians can use chest computed tomography technology to automatically diagnose coronavirus disease 2019 (COVID-19) pneumonia and enhance low-quality images, Infect. Drug Resist. 14 (2021) 671.
[152]
J. Song, H. Wang, Y. Liu, W. Wu, G. Dai, Z. Wu, P. Zhu, W. Zhang, K.W. Yeom, K. Deng, End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT, Eur. J. Nucl. Med. Mol. Imag. 47 (2020) 2516–2524.
[153]
M.A. Mazurowski, Artificial intelligence may cause a significant disruption to the radiology workforce, J. Am. Coll. Radiol. 16 (2019) 1077–1082,.
[154]
D.C. Angus, Randomized clinical trials of artificial intelligence, JAMA, J. Am. Med. Assoc. 323 (2020) 1043–1045,.
[155]
Y. Mirsky, T. Mahler, I. Shelef, Y. Elovici, CT-GAN: Malicious tampering of 3D medical imagery using deep learning, Proc. 28th USENIX Secur. Symp. (2019) 461–478.

Cited By

View all
  • (2024)B-mode ultrasound-based CAD by learning using privileged information with dual-level missing modality completionComputers in Biology and Medicine10.1016/j.compbiomed.2024.109106182:COnline publication date: 1-Nov-2024
  • (2024)Semi-supervised multi-modal medical image segmentation with unified translationComputers in Biology and Medicine10.1016/j.compbiomed.2024.108570176:COnline publication date: 18-Jul-2024
  • (2024)A recurrent positional encoding circular attention mechanism network for biomedical image segmentationComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2024.108054246:COnline publication date: 1-Apr-2024
  • Show More Cited By

Index Terms

  1. Generative adversarial networks in medical image segmentation: A review
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Computers in Biology and Medicine
          Computers in Biology and Medicine  Volume 140, Issue C
          Jan 2022
          672 pages

          Publisher

          Pergamon Press, Inc.

          United States

          Publication History

          Published: 01 January 2022

          Author Tags

          1. Generative adversarial networks
          2. Medical image
          3. Segmentation
          4. Deep learning
          5. Computer vision

          Qualifiers

          • Review-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 05 Mar 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)B-mode ultrasound-based CAD by learning using privileged information with dual-level missing modality completionComputers in Biology and Medicine10.1016/j.compbiomed.2024.109106182:COnline publication date: 1-Nov-2024
          • (2024)Semi-supervised multi-modal medical image segmentation with unified translationComputers in Biology and Medicine10.1016/j.compbiomed.2024.108570176:COnline publication date: 18-Jul-2024
          • (2024)A recurrent positional encoding circular attention mechanism network for biomedical image segmentationComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2024.108054246:COnline publication date: 1-Apr-2024
          • (2024)GAN-Driven Liver Tumor Segmentation: Enhancing Accuracy in Biomedical ImagingSN Computer Science10.1007/s42979-024-02991-25:5Online publication date: 13-Jun-2024
          • (2024)A two-stage approach solo_GAN for overlapping cervical cell segmentation based on single-cell identification and boundary generationApplied Intelligence10.1007/s10489-024-05378-154:6(4621-4645)Online publication date: 1-Mar-2024
          • (2023)Cerebrovascular Segmentation in TOF-MRA with Topology Regularization Adversarial ModelProceedings of the 31st ACM International Conference on Multimedia10.1145/3581783.3611718(4250-4259)Online publication date: 26-Oct-2023
          • (2023)CHSNetComputers in Biology and Medicine10.1016/j.compbiomed.2023.107334164:COnline publication date: 1-Sep-2023
          • (2023)The use of generative adversarial networks in medical image augmentationNeural Computing and Applications10.1007/s00521-023-09100-z35:34(24055-24068)Online publication date: 1-Dec-2023
          • (2023)Score-Based Generative Models for Medical Image Segmentation Using Signed Distance FunctionsPattern Recognition10.1007/978-3-031-54605-1_1(3-17)Online publication date: 19-Sep-2023
          • (2023)Piece-wise Constant Image Segmentation with a Deep Image Prior ApproachScale Space and Variational Methods in Computer Vision10.1007/978-3-031-31975-4_27(352-362)Online publication date: 21-May-2023
          • Show More Cited By

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media