Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term

Published: 01 September 2009 Publication History

Abstract

In this paper, we consider a modified anomalous subdiffusion equation with a nonlinear source term for describing processes that become less anomalous as time progresses by the inclusion of a second fractional time derivative acting on the diffusion term. A new implicit difference method is constructed. The stability and convergence are discussed using a new energy method. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of theoretical analysis.

References

[1]
Sokolov, I. and Klafter, J., From diffusion to anomalous diffusion: A century after Einstein's Brownian motion. Chaos. v15. 026103
[2]
Brown, E., Wu, E., Zipfel, W. and Webb, W., Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys. J. v77. 2837-2849.
[3]
Feder, T., Brust-Mascher, I., Slattery, J., Baird, B. and Webb, W., Constrained diffusion or immobile fraction on cell surfaces: A new interpretation. Biophys. J. v70. 2767-2773.
[4]
R. Ghosh, Mobility and clustering of individual low density lipoprotein receptor molecules on the surface of human skin fibroblasts, Ph.D. Thesis, Cornell University, Ithaca, NY, 1991
[5]
Ghosh, R. and Webb, W., Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. v66. 1301-1318.
[6]
Sheets, E., Lee, G., Simson, R. and Jacobson, K., Transient confinement of a glycosyl phosphatidylinositol-anchored protein in the plasma membrane. Biochemistry. v36. 12449-12458.
[7]
J. Slattery, Lateral mobility of FcRI on rat basophilic leukaemia cells as measured by single particle tracking using a novel bright fluorescent probe, Ph.D. Thesis, Cornell University, Ithaca, NY, 1991
[8]
Smith, P., Morrison, I., Wilson, K., Fernandez, N. and Cherry, R., Anomalous diffusion of major histocompatability complex class I molecules on HeLa cells determined by single particle tracking. Biophys. J. v76. 3331-3344.
[9]
Simson, R., Yang, B., Moore, S., Doherty, P., Walsh, F. and Jacobson, K., Structural mosaicism on the submicron scale in the plasma membrane. Biophys. J. v74. 297-308.
[10]
Saxton, M., Anomalous diffusion due to obstacles: A Monte Carlo Study. Biophys. J. v66. 394-401.
[11]
Saxton, M., Anomalous subdiffusion in fluorescence photobleaching recovery: A Monte Carlo study. Biophys. J. v81. 2226-2240.
[12]
Saxton, M., Anomalous diffusion due to binding: A Monte Carlo study. Biophys. J. v70. 1250-1262.
[13]
Metzler, R. and Klafter, J., The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. v339. 1-77.
[14]
Yuste, S.B. and Lindenberg, K., Subdiffusion limited reactions. Chem. Phys. v284. 169-180.
[15]
Yuste, S.B., Acedo, L. and Lindenberg, K., Reaction front in an A+B¿C reaction-subdiffusion process. Phys. Rev. E. v69. 036126
[16]
Seki, K., Wojcik, M. and Tachiya, M., Fractional reaction-diffusion equation. J. Chem. Phys. v119. 2165-2174.
[17]
Tan, W.C. and Masuoka, T., Stokes' first problem for a second grade fluid in a porous half-space with heated boundary. Internat. J. Non-Linear Mech. v40. 515-522.
[18]
Chen, C., Liu, F. and Anh, V., A Fourier method and an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative. J. Comp. Appl. Math. v223 i2. 777-789.
[19]
Zaslavsky, G., Fractional kinetic equation for Hamiltonian chaos Chaotic advection tracer dynamics and turbulent dispersion. Physica D. v76. 110-122.
[20]
Metzler, R. and Klafter, J., The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. v37. R161-R208.
[21]
Del-Castillo-Negrete, D., Carreras, B.A. and Lynch, V.E., Front dynamics in reaction-diffusion systems with levy flights: A fractional diffusion approach. Phys. Rev. Lett. v91. 018302
[22]
Henry, B. and Wearne, S., Fractional reaction-diffusion. Physica A. v276. 448-455.
[23]
Seki, K., Wojcik, M. and Tachiya, M., Fractional reaction-diffusion equation. J. Chem. Phys. v119 i4. 2165-2170.
[24]
Seki, K., Wojcik, M. and Tachiya, M., Recombination kinetics in subdiffusive media. J. Chem. Phys. v119 i14. 7525-7533.
[25]
Chechkin, A.V., Gorenflo, R., Sokolov, I.M. and Gonchar, V.Yu., Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. v6 i3. 259-279.
[26]
Langlands, T.A.M., Solution of a modified fractional diffusion equation. Physica A. v367. 136-144.
[27]
Sokolov, I.M., Chechkin, A.V. and Klafter, J., Distributed-order fractional kinetics. Acta. Phys. Polon. B. v35. 1323
[28]
Mainardi, F., Raberto, M., Gorenflo, R. and Scalas, E., Fractional calculus and continuous-time finance II: The waiting-time distribution. Physica A. v287. 468-481.
[29]
Raberto, M., Scalas, E. and Mainardi, F., Waiting-times and returns in high frequency financial data: An empirical study. Physica A. v314. 749-755.
[30]
Scalas, E., Gorenflo, R. and Mainardi, F., Fractional calculus and continuous-time finance. Physica A. v284. 376-384.
[31]
E. Scalas, R. Gorenflo, F. Mainardi, M. Mantelli, M. Raberto, Anomalous waiting times in high-frequency financial data, 2003. http://arxiv.org/abs/cond-mat/0310305i
[32]
Scalas, E., Five years of continuous-time random walks in econophysics. In: Namatame, A. (Ed.), Proceedings of WEHIA 2004, Kyoto,
[33]
Scalas, E., Gorenflo, R., Mainardi, F. and Meerschaert, M.M., Speculative option valuation and the fractional diffusion equation. In: Sabatier, J., Tenreiro Machado, J. (Eds.), Proceedings of the IFAC Workshop on Fractional Differentiation and its Applications, Bordeaux, pp. 234-238.
[34]
Scalas, E., The application of continuous-time random walks in finance and economics. Physica A. v362 i2. 225-239.
[35]
Masoliver, J. and Montero, M., Continuous-time random-walk model for financial distributions. Phys. Rev. E. v67. 021112
[36]
J. Masoliver, M. Montero, J. Perello, G. Weiss, The CTRW in finance: Direct and inverse problems, 2003. http://arxiv.org/abs/cond-mat/0308017i
[37]
Masoliver, J., Montero, M., Perello, J. and Weiss, G.H., The continuous time random walk formalism in financial markets. J. Econ. Behav. Org. v61. 577-591.
[38]
Liu, F., Anh, V. and Turner, I., Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. v166. 209-219.
[39]
Meerschaert, M. and Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. v172. 65-77.
[40]
Roop, J.P., Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in R2. J. Comput. Appl. Math. v193 i1. 243-268.
[41]
Liu, F., Zhuang, P., Anh, V., Turner, I. and Burrage, K., Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. J. Appl. Math. Comput. v191. 12-21.
[42]
Yu, Q., Liu, F., Anh, V. and Turner, I., Solving linear and nonlinear space-time fractional reaction-diffusion equations by Adomian decomposition method. Internat. J. Numer. Methods Eng. v74. 138-158.
[43]
Yuste, S.B. and Acedo, L., An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. v42 i5. 1862-1874.
[44]
Langlands, T.A.M. and Henry, B.I., The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. v205. 719-736.
[45]
Chen, Chang-Ming, Liu, F., Turner, I. and Anh, V., Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. v227. 886-897.
[46]
Zhuang, P., Liu, F., Anh, V. and Turner, I., New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. v46 i2. 1079-1095.
[47]
B. Baeumer, M.K. Mark, M. Meerschaert, Fractional reaction-diffusion equation for species growth and dispersal, J. Math. Biol. (2007) (in press). http://www.maths.otago.ac.nz/~mcubed/JMBseed.pdf

Cited By

View all
  • (2023)A high-order numerical scheme for multidimensional convection-diffusion-reaction equation with time-fractional derivativeNumerical Algorithms10.1007/s11075-023-01516-x94:2(681-700)Online publication date: 4-Mar-2023
  • (2023)A High-Order Discrete Energy Decay and Maximum-Principle Preserving Scheme for Time Fractional Allen–Cahn EquationJournal of Scientific Computing10.1007/s10915-023-02263-w96:2Online publication date: 15-Jun-2023
  • (2020)Efficient high-order compact exponential time differencing method for space-fractional reaction-diffusion systems with nonhomogeneous boundary conditionsNumerical Algorithms10.1007/s11075-019-00729-383:4(1373-1397)Online publication date: 1-Apr-2020
  • Show More Cited By
  1. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Journal of Computational and Applied Mathematics
        Journal of Computational and Applied Mathematics  Volume 231, Issue 1
        September, 2009
        491 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 September 2009

        Author Tags

        1. 26A33
        2. 34K28
        3. 60J70
        4. 65M12
        5. Energy method
        6. Implicit difference method
        7. Modified anomalous subdiffusion equation
        8. Nonlinear source terms
        9. Stability and convergence

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 15 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2023)A high-order numerical scheme for multidimensional convection-diffusion-reaction equation with time-fractional derivativeNumerical Algorithms10.1007/s11075-023-01516-x94:2(681-700)Online publication date: 4-Mar-2023
        • (2023)A High-Order Discrete Energy Decay and Maximum-Principle Preserving Scheme for Time Fractional Allen–Cahn EquationJournal of Scientific Computing10.1007/s10915-023-02263-w96:2Online publication date: 15-Jun-2023
        • (2020)Efficient high-order compact exponential time differencing method for space-fractional reaction-diffusion systems with nonhomogeneous boundary conditionsNumerical Algorithms10.1007/s11075-019-00729-383:4(1373-1397)Online publication date: 1-Apr-2020
        • (2019)A Second-Order Uniformly Stable Explicit Asymmetric Discretization Method for One-Dimensional Fractional Diffusion EquationsComplexity10.1155/2019/42384202019Online publication date: 1-Jan-2019
        • (2018)Numerical simulation with the second order compact approximation of first order derivative for the modified fractional diffusion equationApplied Mathematics and Computation10.1016/j.amc.2017.07.070320:C(319-330)Online publication date: 1-Mar-2018
        • (2017)An Accurate Approximate-Analytical Technique for Solving Time-Fractional Partial Differential EquationsComplexity10.1155/2017/87182092017Online publication date: 24-Dec-2017
        • (2017)Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditionsComputers & Mathematics with Applications10.1016/j.camwa.2016.11.03273:6(1243-1261)Online publication date: 15-Mar-2017
        • (2017)The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source termJournal of Computational and Applied Mathematics10.1016/j.cam.2016.10.014318:C(199-210)Online publication date: 1-Jul-2017
        • (2017)A second-order compact difference scheme for the fourth-order fractional sub-diffusion equationNumerical Algorithms10.1007/s11075-017-0271-776:2(573-598)Online publication date: 1-Oct-2017
        • (2017)An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimateNumerical Algorithms10.1007/s11075-016-0201-075:1(173-211)Online publication date: 1-May-2017
        • Show More Cited By

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media