Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Real-Time Fault-Tolerant mHealth System: Comprehensive Review of Healthcare Services, Opens Issues, Challenges and Methodological Aspects

Published: 01 August 2018 Publication History

Abstract

The burden on healthcare services in the world has increased substantially in the past decades. The quality and quantity of care have to increase to meet surging demands, especially among patients with chronic heart diseases. The expansion of information and communication technologies has led to new models for the delivery healthcare services in telemedicine. Therefore, mHealth plays an imperative role in the sustainable delivery of healthcare services in telemedicine. This paper presents a comprehensive review of healthcare service provision. It highlights the open issues and challenges related to the use of the real-time fault-tolerant mHealth system in telemedicine. The methodological aspects of mHealth are examined, and three distinct and successive phases are presented. The first discusses the identification process for establishing a decision matrix based on a crossover of `time of arrival of patient at the hospital/multi-services' and `hospitals' within mHealth. The second phase discusses the development of a decision matrix for hospital selection based on the MAHP method. The third phase discusses the validation of the proposed system.

References

[1]
Çalişkan, H., Selection of boron based tribological hard coatings using multi-criteria decision making methods. Mater. Des. 50:742---749, 2013.
[2]
Doumbouya, M. B., Kamsu-Foguem, B., Kenfack, H., and Foguem, C., Telemedicine using mobile telecommunication: Towards syntactic interoperability in teleexpertise. Telemat. Info. 31(4):648---659, Nov. 2014.
[3]
Albahri, O. S. et al., Systematic review of real-time remote health monitoring system in triage and priority-based sensor technology: Taxonomy, open challenges, motivation and recommendations. J. Med. Syst. 42(5):80, 2018.
[4]
N. Kalid et al., "Based on real time remote health monitoring systems: A new approach for prioritization `large scales data' patients with chronic heart diseases using body sensors and communication technology," J. Med. Syst., vol. 42, no. 4, p. 69, Apr. 2018.
[5]
Kovalchuk, S. V., Krotov, E., Smirnov, P. A., Nasonov, D. A., and Yakovlev, A. N., Distributed data-driven platform for urgent decision making in cardiological ambulance control. Futur. Gener. Comput. Syst. 79:144---154, 2018.
[6]
Chang, M.-Y., Pang, C., Michael Tarn, J., Liu, T.-S., and Yen, D. C., Exploring user acceptance of an e-hospital service: an empirical study in Taiwan. Comput. Stand. Interfaces 38:35---43, 2015.
[7]
Figueredo, M. V. M., and Dias, J. S., Mobile telemedicine system for home care and patient monitoring. Eng. Med. Biol. Soc. 2004. IEMBS `04. 26th Annu. Int. Conf. IEEE 2:3387---3390, 2004.
[8]
Wang, J., Qiu, M., and Guo, B., Enabling real-time information service on telehealth system over cloud-based big data platform. J. Syst. Archit. 72:69---79, 2017.
[9]
Salman, O. H., Rasid, M. F. A., Saripan, M. I., and Subramaniam, S. K., Multi-sources data fusion framework for remote triage prioritization in telehealth. J. Med. Syst. 38(9):103, 2014.
[10]
Doumbouya, M. B., Kamsu-Foguem, B., Kenfack, H., and Foguem, C., A framework for decision making on teleexpertise with traceability of the reasoning. IRBM 36(1):40---51, 2015.
[11]
Rajan, S. P., Review and investigations on future research directions of mobile based telecare system for cardiac surveillance. Rev. Mex. Trastor. Aliment. 13(4):454---460, 2015.
[12]
Alsalem, M. A. et al., A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Comput. Methods Programs Biomed. 158:93---112, 2018.
[13]
Hussain, M., Al-Haiqi, A., Zaidan, A., Zaidan, B., Kiah, M. L. M., Anuar, N. B., and Abdulnabi, M., The landscape of research on smartphone medical apps: Coherent taxonomy, motivations, open challenges and recommendations. Comput. Methods Prog. Biomed. 122(3):393---408, 2015.
[14]
Sene, A., Kamsu-Foguem, B., and Rumeau, P., Telemedicine framework using case-based reasoning with evidences. Comput. Methods Programs Biomed. 121(1):21---35, 2015.
[15]
Negra, R., Jemili, I., and Belghith, A., Wireless body area networks : Applications and technologies. Procedia - Procedia Comput. Sci. 83:1274---1281, 2016.
[16]
Mat Kiah, M. L., Zaidan, B. B., Zaidan, A. A., Nabi, M., and Ibraheem, R., MIRASS: Medical informatics research activity support system using information mashup network. J. Med. Syst. 38(4):1---37, 2014a.
[17]
Zaidan, A. A. et al., Challenges, alternatives, and paths to sustainability: Better public health promotion using social networking pages as key tools. J Med. Syst. 39(2):1---14, 2015.
[18]
Zaidan, B. B., Haiqi, A., Zaidan, A. A., Abdulnabi, M., Mat Kiah, M. L., and Muzamel, H., A security framework for nationwide health information exchange based on telehealth strategy. J. Med. Syst. 39(5):1---19, 2015.
[19]
Alanazi, H. O., Zaidan, A. A., Zaidan, B. B., Mat Kiah, M. L., and Al-Bakri, S. H., Meeting the security requirements of electronic medical records in the ERA of high-speed computing. J. Med. Syst. 39(1):1---14, 2015.
[20]
Alanazi, H. O., Alam, G. M., Zaidan, B. B., and Zaidan, A. A., Securing electronic medical records transmissions over unsecured communications: An overview for better medical governance. J. Med. Plants Res. 4(19):2059---2074, 2010.
[21]
Hussain, M., Al-Haiqi, A., Zaidan, A., Zaidan, B., Kiah, M. M., Anuar, N. B., and Abdulnabi, M., The rise of keyloggers on smartphones: A survey and insight into motion-based tap inference attacks. Pervasive Mobile Comput. 25:1---25, 2016.
[22]
Mat Kiah, M. L., Al-Bakri, S. H., Zaidan, A. A., Zaidan, B. B., and Hussain, M., Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture. J. Med. Syst. 38(10):1---13, 2014c.
[23]
Mat Kiah, M. L., Nabi, M. S., Zaidan, B. B., and Zaidan, A. A., An enhanced security solution for electronic medical records based on AES hybrid technique with SOAP/XML and SHA-1. J Med. Syst. 37(5):1---16, 2013.
[24]
Abdulnabi, M., Al-Haiqi, A., Kiah, M. L. M., Zaidan, A. A., Zaidan, B. B., and Muzammil Hussain, A., Distributed framework for health information exchange using smartphone technologies. J. Biomed. Info. 69:230---250, 2017.
[25]
Zaidan, B. B., A.A.Zaidan and M. L. mat Kiah, impact of data privacy and confidentiality on developing telemedicine applications: A review participates opinion and expert concerns. Int. J. Pharmacol. 7(3):382---387, 2011.
[26]
Hussain, M., Ahmed, A.-H., Zaidan, A. A., Zaidan, B. B., Kiah, M., Iqbal, S., Iqbal, S., and Abdulnabi, M., A security framework for mHealth apps on android platform. Comput. Sec. 45:191---217, 2018.
[27]
Muzammil Hussain, A.A. Zaidan, B.B. Zidan, S. Iqbal, M.M. Ahmed, O.S. Albahri, A.S. Albahri, Conceptual framework for the security of mobile. Health Appl. Android Platform, 2018, Vol 35 Issuee 3, p.p 1---32.
[28]
Moreno, S., Quintero, A., Ochoa, C., Bonfante, M., Villareal, R., and Pestana, J., Remote monitoring system of vital signs for triage and detection of anomalous patient states in the emergency room. 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), 2016, no. . 1---5, 2015.
[29]
C. Li, X. Yuan, L. Yang, and Y. Song, "A Hybrid Lifetime Extended directional approach for WBANs," Sensors, vol. 15, no. 12, pp. 28005---28030, 2015.
[30]
Yuan, X., Li, C., Song, Y., Yang, L., and Ullah, S., On energy-saving in E-healthcare: a directional MAC protocol for WBAN. 2015 IEEE Globecom workshops (GC Wkshps). 1---6, 2015.
[31]
Rodrigues, E. M. G., Godina, R., Cabrita, C. M. P., and Catalão, J. P. S., Experimental low cost reflective type oximeter for wearable health systems. Biomed. Signal Process. Control 31:419---433, 2017.
[32]
Hwang, T.-H., Kim, D.-S., and Kim, J.-G., An on-time power-aware scheduling scheme for medical sensor SoC-based WBAN systems. Sensors 13(12):375---392, 2012.
[33]
Li, N., Lin, K., Yong, S., Chen, X., Wang, X., and Zhang, X., Design and implementation of a MAC protocol for a wearable monitoring system on human body. 2015 IEEE 11th international conference on ASIC (ASICON). 1---4, 2015
[34]
Sudha, G. F., Karthik, S., and Kumar, N. S., Activity aware energy efficient priority based multi patient monitoring adaptive system for body sensor networks. Technol. Heal. Care 22(2):167---177, 2014.
[35]
Ru Kong, C. Chen, W. Yu, Yang, B., and Guan, X., Data priority based slot allocation for wireless body area networks. 2013 In. Conf. Wireless Commun. Sign. Process. 1---6, 2013.
[36]
Misra, S., and Sarkar, S., Priority-based time-slot allocation in wireless body area networks during medical emergency situations: An evolutionary game-theoretic perspective. IEEE J. Biomed. Heal. Info. 19(2):541---548, 2015.
[37]
Puri, T., Challa, R. K., and Sehgal, N. K., Energy efficient QoS aware MAC layer time slot allocation scheme for WBASN. 2015 Int. Conf. Adv. Comput, Commun Info. (ICACCI). 966---972, 2015.
[38]
Chiang, H. P., Lai, C. F., and Huang, Y. M., A green cloud-assisted health monitoring service on wireless body area networks. Inf. Sci. (Ny). 284:118---129, 2014.
[39]
Ben Elhadj, H., Elias, J., Chaari, L., and Kamoun, L., A priority based cross layer routing protocol for healthcare applications. Ad Hoc Netw. 42, 2015.
[40]
Hu, L., Zhang, Y., Feng, D., Hassan, M. M., Alelaiwi, A., and Alamri, A., Design of QoS-aware multi-level MAC-layer for wireless body area network. J. Med. Syst. 39(12):192, 2015.
[41]
Bradai, N., Charfi, E., Fourati, L. C., and Kamoun, L., Priority consideration in inter-WBAN data scheduling and aggregation for monitoring systems. Trans. Emerg. Telecommun. Technol. 27(4):589---600, 2016.
[42]
M. Iftikhar and I. Ahmad, "A Novel Analytical Model for provisioning QoS in body area sensor networks," Proc. Comput. Sci., vol. 32, pp. 900---907, 2014.
[43]
Sevin, A., Bayilmis, C., and Kirbas, I., Design and implementation of a new quality of service-aware cross-layer medium access protocol for wireless body area networks. Comput. Electr. Eng. 56:145---156, 2016.
[44]
Iftikhar, M., Al Elaiwi, N., and Aksoy, M. S., Performance analysis of priority queuing model for low power wireless body area networks (WBANs). Proc. Comput. Sci. 34:518---525, 2014.
[45]
Soufiene, B. O., Bahattab, A. A., Trad, A., and Youssef, H., Lightweight and confidential data aggregation in healthcare wireless sensor networks. Trans. Emerg. Telecommun. Technol. 27(4):576---588, 2016.
[46]
Baehr, D., McKinney, S., Quirk, A., and Harfoush, K., On the practicality of elliptic curve cryptography for medical sensor networks. 2014 11th Ann. High Cap. Optic. Netw. Emerg/Enabling Technol. (Photonics for Energy). 41---45, 2014.
[47]
de la Piedra, A., Braeken, A., Touhafi, A., and Wouters, K., Secure event logging in sensor networks. Comput. Math. with Appl. 65(5):762---773, 2013.
[48]
D. S. Hedin, D. T. Kollmann, P. L. Gibson, T. H. Riehle, and G. J. Seifert, "Distance bounded energy detecting ultra-wideband impulse radio secure protocol. 2014 36th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 2014, vol. 2014, pp. 6619---6622.
[49]
Rubio, Ó. J., Trigo, J. D., Alesanco, Á., Serrano, L., and García, J., Analysis of ISO/IEEE 11073 built-in security and its potential IHE-based extensibility. J. Biomed. Inform. 60:270---285, 2016.
[50]
Benmansour, T., Ahmed, T., and Moussaoui, S., Performance evaluation of IEEE 802.15.6 MAC in monitoring of a cardiac patient. 2016 IEEE 41st Conf. Local Comput. Netw. Workshops (LCN Workshops). 241---247, 2016.
[51]
H. Fourati, H. Idoudi, T. Val, A. Van Den Bossche, and L. A. Saidane, "Performance evaluation of IEEE 802.15.6 CSMA/CA-based CANet WBAN," Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl., AICCSA, vol. 2016---July. pp. 1---7, 2016.
[52]
Radhakrishnan, S., Duvvuru, A., and Kamarthi, S. V., Investigating discrete event simulation method to assess the effectiveness of wearable health monitoring devices. Procedia Econ. Fin. 11(14):838---856, 2014.
[53]
Meizoso, J. P. et al., Evaluation of miniature wireless vital signs monitor in a trauma intensive care unit. Mil. Med. 181(5S):199---204, 2016.
[54]
Rezaee, A. A., Yaghmaee, M. H., and Rahmani, A. M., Optimized congestion management protocol for healthcare wireless sensor networks. Wirel. Pers. Commun. 75(1):11---34, 2014.
[55]
Ghanavati, S., Abawaji, J., and Izadi, D., A Congestion Control Scheme based on fuzzy logic in wireless body area networks. 2015 IEEE 14th Int. Sym. Netw. Comput. Appl. 235---242, 2015.
[56]
Ghanavati, S., Abawajy, J., and Izadi, D., ECG rate control scheme in pervasive health care monitoring system. 2016 IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE). 2265---2270, 2016.
[57]
Kaur, J., Saini, K. S., and Grewal, R., Priority based congestion avoidance hybrid scheme for Wireless Sensor Network. 2015 1st Int. Conf. Next Gen. Comput. Technol. (NGCT). 158---165, 2015.
[58]
Rezaee, A. A., Yaghmaee, M. H., Rahmani, A. M., and Mohajerzadeh, A. H., HOCA: Healthcare aware optimized congestion avoidance and control protocol for wireless sensor networks. J. Netw. Comput. Appl. 37(1):216---228, 2014.
[59]
Villalonga, C., Pomares, H., Rojas, I., and Banos, O., MIMU-wear: Ontology-based sensor selection for real-world wearable activity recognition. Neurocomputing 250(2017):76---100, 2017.
[60]
B. Almadani, B. Saeed, and A. Alroubaiy, "Healthcare systems integration using real time publish subscribe (RTPS) middleware," Comput. Electr. Eng,., vol. 50, no. May pp. 67---78, 2016.
[61]
Ben Elhadj, H., Elias, J., Chaari, L., and Kamoun, L., Multi-attribute decision making handover algorithm for wireless body area networks. Comput. Commun. 81:97---108, 2016.
[62]
N. Bradai, L. Chaari Fourati, and L. Kamoun, "WBAN data scheduling and aggregation under WBAN/WLAN healthcare network," Ad Hoc Netw., vol. 25, no. PA, pp. 251---262, Feb. 2015.
[63]
Gambhir, S., DWBAN: Dynamic priority based WBAN architecture for healthcare system. 2016 3rd Int. Conf. Comput. Sustain. Glob. Dev. 0---6, 2016.
[64]
Gündoğdu, K., and Çalhan, A., An implementation of wireless body area networks for improving priority data transmission delay. J. Med. Syst. 40(3):75, 2016.
[65]
Rae Hyun Kim, Pyung Soo Kim, and Jeong Gon Kim, "An effect of delay reduced MAC protocol for WBAN based medical signal monitoring," in 2015 IEEE Pacific Rim Conf. Commun., Comput. Sign. Process. (PACRIM), 2015, vol. 2015---Novem, pp. 434---437.
[66]
Zhao, Y., and Kerkhoff, H. G., Design of an Embedded Health Monitoring Infrastructure for accessing multi-processor SoC degradation. 2014 17th Euromicro Conf. Digit. Syst. Design. 154---160, 2014.
[67]
Shah, M. A., Kim, J., Khadra, M. H., and Feng, D., Home area network for optimizing telehealth services--empirical simulation analysis. Conf. Proc.: Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Ann. Conf. 2014(2012):1370---1373, 2014.
[68]
Rezvani, S., and Ghorashi, S. A., Context aware and channel-based resource allocation for wireless body area networks. IET Wirel. Sens. Syst. 3(1):16---25, 2013.
[69]
Ren, J., Wu, G., Li, X., Pirozmand, P., and Obaidat, M. S., Probabilistic response-time analysis for real-time systems in body area sensor networks. Int. J. Commun. Syst. 28(16):2145---2166, 2015.
[70]
Lin, D., Labeau, F., Yao, Y., Vasilakos, A. V., and Tang, Y., Admission control over internet of vehicles attached with medical sensors for ubiquitous healthcare applications. IEEE J. Biomed. Heal. Info 20(4):1195---1204, 2016.
[71]
I. Al Mamoon, A. K. M. Muzahidul-Islam, S. Baharun, S. Komaki, and A. Ahmed, "Architecture and communication protocols for cognitive radio network enabled hospital," in 2015 9th Int. Sym. Med. Info. Commun. Technol. (ISMICT), 2015, vol. 2015---May, pp. 170---174.
[72]
Dong, J., and Yang, G.-H., Reliable state feedback control of T---S fuzzy systems with sensor faults. IEEE Trans. Fuzzy Syst. 23(2):421---433, 2015.
[73]
S. Sakr and A. Elgammal, "Towards a Comprehensive Data Analytics Framework for Smart Healthcare Services," Big Data Res., vol. 4, no. May, pp. 44---58, Jun. 2016.
[74]
Pombo, N., Garcia, N., Felizardo, V., and Bousson, K., Big data reduction using RBFNN: A predictive model for ECG waveform for eHealth platform integration. 2014 IEEE 16th Int. Conf. e-Health Netw. Appl. Serv. (Healthcom). 66---70, 2014.
[75]
Moutacalli, M. T., Marmen, V., Bouzouane, A., and Bouchard, B., Activity pattern mining using temporal relationships in a smart home. 2013 IEEE Sym. Comput. Intell. Healthcare e-health (CICARE). 83---87, 2013.
[76]
Vaidehi, V., Vardhini, M., Yogeshwaran, H., Inbasagar, G., Bhargavi, R., and Hemalatha, C. S., Agent based health monitoring of elderly people in indoor environments using wireless sensor networks. Procedia Comput. Sci. 19:64---71, 2013.
[77]
Bharatula, S., and Meenakshi, M., Design of Cognitive Radio Network for hospital management system. Wirel. Pers. Commun. 90(2):1021---1038, 2016.
[78]
Ben Othman, S., Zgaya, H., Hammadi, S., Quilliot, A., Martinot, A., and Renard, J., Agents endowed with uncertainty management behaviors to solve a multiskill healthcare task scheduling. J. Biomed. Inform. 64:25---43, Dec. 2016.
[79]
Peleg, M. et al., Assessment of a personalized and distributed patient guidance system. Int. J. Med. Inform. 101:108---130, 2017.
[80]
Tawfik, H., and Anya, O., Evaluating practice-centered awareness in cross-boundary telehealth decision support systems. Telemat. Info. 32(3):486---503, 2015.
[81]
Tamura, T. et al., Assessment of participant compliance with a web-based home healthcare system for promoting specific health checkups. Biocybern. Biomed. Eng. 34(1):63---69, 2014.
[82]
Lounis, A., Hadjidj, A., Bouabdallah, A., and Challal, Y., Healing on the cloud: Secure cloud architecture for medical wireless sensor networks. Futur. Gener. Comput. Syst. 55:266---277, 2016.
[83]
Saleem, K., Derhab, A., Al-Muhtadi, J., and Shahzad, B., Human-oriented design of secure machine-to-machine communication system for e-healthcare society. Comput. Human Behav. 51(Part B):977---985, 2015.
[84]
Nageba, E., Rubel, P., and Fayn, J., Towards an intelligent exploitation of heterogeneous and distributed resources in cooperative environments of eHealth. IRBM 34(1):79---85, 2013.
[85]
Urovi, V., del Toro, O. J., Dubosson, F., Torres, A. R., and Schumacher, M. I., COMPOSE: Using temporal patterns for interpreting wearable sensor data with computer interpretable guidelines. Comput. Biol. Med. 81:24---31, 2017.
[86]
Tegegne, T., and van der Weide, T. P. T., Enriching queries with user preferences in healthcare. Inf. Process. Manag. 50(4):599---620, 2014.
[87]
Hindia, M. N., Rahman, T. A., Ojukwu, H., Hanafi, E. B., and Fattouh, A., Enabling remote health-caring utilizing IoT concept over LTE-femtocell networks. PLoS One 11(5):e0155077, 2016.
[88]
Ganapathy, K., Vaidehi, V., Kannan, B., and Murugan, H., Hierarchical particle swarm optimization with Ortho-cyclic circles. Expert Syst. Appl. 41(7):3460---3476, 2014.
[89]
Dos Santos, J. R. B., Blard, G., Oliveira, A. S. R., and De Carvalho, N. B., Wireless sensor tag and network for improved clinical triage. 2015 Euromicro Conf. Digit. Syst. Design 31(2017):399---406, 2015.
[90]
Niswar, M., et al., Performance evaluation of ZigBee-based wireless sensor network for monitoring patients' pulse status. 2013 Int. Conf. Info. Technol. Elect. Eng. (ICITEE). 291---294, 2013.
[91]
J. Gómez, B. Oviedo, and E. Zhuma, "Patient monitoring system based on internet of things," Proc. Comput. Sci., vol. 83, no. Ant, pp. 90---97, 2016.
[92]
Hussain, A., Wenbi, R., da Silva, A. L., Nadher, M., and Mudhish, M., Health and emergency-care platform for the elderly and disabled people in the Smart City. J. Syst. Softw. 110:253---263, 2015.
[93]
G. C. Lamprinakos et al., "An integrated remote monitoring platform towards telehealth and telecare services interoperability," Inf. Sci. (Ny)., vol. 308, no. March, pp. 23---37, 2015.
[94]
Sung, W.-T., and Chang, K.-Y., Health parameter monitoring via a novel wireless system. Appl. Soft. Comput. 22:667---680, 2014.
[95]
S. V. Zanjal and G. R. Talmale, "Medicine reminder and monitoring system for secure health using IOT," Proc. Comput. Sci., vol. 78, no. December 2015, pp. 471---476, 2016.
[96]
Mendes, J., Simões, H., Rosa, P., Costa, N., Rabadão, C., and Pereira, A., Secure low-cost solution for elder's eCardio surveillance. Proc. Comput. Sci. 27(Dsai 2013):46---56, 2014.
[97]
AHMED, A., Rebeiro-Hargrave, A., Nohara, Y., KAI, E., Hossein Ripon, Z., and NAKASHIMA, N., Targeting morbidity in unreached communities using portable health clinic system. IEICE Trans. Commun. E97---B(3):540---545, 2014.
[98]
Ganapathy, K., Priya, B., Priya, B., Dhivya, V. P., and Vaidehi, V., SOA framework for geriatric remote health care using Wireless sensor network. Proc. Comput. Sci. 19(Fams):1012---1019, 2013.
[99]
Miah, S. J., Hasan, J., and Gammack, J. G., On-cloud healthcare clinic: an e-health consultancy approach for remote communities in a developing country. Telemat. Info. 34(1):311---322, 2017.
[100]
Traverso, G. et al., Physiologic status monitoring via the gastrointestinal tract. PLoS One 10(11):e0141666, 2015.
[101]
Rajkumar, R., and Sriman Narayana Iyengar, N. C., Dynamic integration of mobile JXTA with cloud computing for emergency rural public health care. Osong Publ. Heal. Res. Perspect. 4(5):255---264, 2013.
[102]
Kumar, N., Kaur, K., Jindal, A., and Rodrigues, J. J. P. C., Providing healthcare services on-the-fly using multi-player cooperation game theory in internet of vehicles (IoV) environment. Digit. Commun. Netw. 1(3):191---203, 2015.
[103]
Moretti, S., Cicalò, S., Mazzotti, M., Tralli, V., and Chiani, M., Content/context-aware multiple camera selection and video adaptation for the support of m-health services. Proc. Comput. Sci. 40(C):206---213, 2014.
[104]
Calyam, P. et al., Synchronous big data analytics for personalized and remote physical therapy. Pervasive Mob. Comput. 28:3---20, 2016.
[105]
Teijeiro, T., Félix, P., Presedo, J., and Zamarrón, C., An open platform for the protocolization of home medical supervision. Expert Syst. Appl. 40(7):2607---2614, 2013.
[106]
Touati, F., and Tabish, R., U-healthcare system: State-of-the-art review and challenges. J. Med. Syst. 37(3):9949, 2013.
[107]
Acampora, G., Cook, D. J., Rashidi, P., and Vasilakos, A. V., A survey on ambient intelligence in healthcare. Proc. IEEE 101(12):2470---2494, 2013.
[108]
Ali, R. et al., GUDM: Automatic generation of unified datasets for learning and reasoning in healthcare. Sensors 15(12):15772---15798, 2015.
[109]
Gaynor, M., and Waterman, J., Design framework for sensors and RFID tags with healthcare applications. Heal. Policy Technol. 5(4):357---369, 2016.
[110]
Kim, H.-K., Convergence agent model for developing u-healthcare systems. Futur. Gener. Comput. Syst. 35:39---48, 2014.
[111]
Misra, S., and Chatterjee, S., Social choice considerations in cloud-assisted WBAN architecture for post-disaster healthcare: Data aggregation and channelization. Inf. Sci. (Ny). 284:95---117, 2014.
[112]
Zhang, K., Liang, X., Baura, M., Lu, R., and Sherman Shen, X., PHDA: A priority based health data aggregation with privacy preservation for cloud assisted WBANs. Inf. Sci. (Ny). 284:130---141, 2014.
[113]
C. Yi, Z. Zhao, J. Cai, R. L. De Faria, and G. M. Zhang, Beyond-wireless body area networks," Comput. Netw., 2016.
[114]
Yi, C., Alfa, A. S., and Cai, J., An incentive-compatible mechanism for transmission scheduling of delay-sensitive medical packets in E-health networks. IEEE Trans. Mob. Comput. 15(10):2424---2436, 2016.
[115]
Yi, Z. et al., Emergency treatment in smart terminal-based e-healthcare networks. 2015 4th Int. Conf. Comput. Sci Netw. Technol. (ICCSNT). no. Iccsnt. 1178---1181, 2015.
[116]
Varshney, U., A model for improving quality of decisions in mobile health. Decis. Support Syst. 62:66---77, 2014.
[117]
Minutolo, A., Esposito, M., and De Pietro, G., Design and validation of a light-weight reasoning system to support remote health monitoring applications. Eng. Appl. Artif. Intell. 41:232---248, 2015.
[118]
Haque, S. A., and Aziz, S. M., False alarm detection in cyber-physical systems for healthcare applications. AASRI Proc. 5:54---61, 2013.
[119]
Alnanih, R., Ormandjieva, O., and Radhakrishnan, T., Context-based and rule-based adaptation of mobile user interfaces in mHealth. Proc. Comput. Sci. 21:390---397, 2013.
[120]
Faiola, A., and Holden, R. J., Consumer health informatics: Empowering healthy-living-seekers through mHealth. Prog. Cardiovasc. Dis. 59(5):479---486, 2017.
[121]
Ryu, S., Book review: mHealth: New horizons for health through mobile technologies: Based on the findings of the second global survey on eHealth (global observatory for eHealth series, volume 3). Healthc. Inform. Res. 18(3):231, 2012.
[122]
Hussain, M. et al., Conceptual framework for the security of mobile health applications on android platform. Telemat. Info, 2018.
[123]
Bouakaz, S. et al., CIRDO: Smart companion for helping elderly to live at home for longer. IRBM 35(2):100---108, 2014.
[124]
De Backere, F., Bonte, P., Verstichel, S., Ongenae, F., and De Turck, F., The OCarePlatform: a context-aware system to support independent living. Comput. Methods Programs Biomed. 140:111---120, 2017.
[125]
Kormanyos, B., and Pataki, B., Multilevel simulation of daily activities: Why and how?. 2013 IEEE Int Conf. Comput. Intell. Virt. Environ. Measure. Syst. Appl. (CIVEMSA). 1---6, 2013.
[126]
Rahmani, A. M. et al., Exploiting smart e-health gateways at the edge of healthcare internet-of-things: a fog computing approach. Futur. Gener. Comput. Syst. 78(2):641---658, 2018.
[127]
Boursalie, O., Samavi, R., and Doyle, T. E., M4CVD: mobile machine learning model for monitoring cardiovascular disease. Proc. Comput. Sci. 63:384---391, 2015.
[128]
Fezari, M., Rasras, R., and El Emary, I. M. M., Ambulatory health monitoring system using wireless sensors node. Procedia Comput. Sci. 65(Iccmit):86---94, 2015.
[129]
Villarreal, V., Fontecha, J., Hervas, R., and Bravo, J., Mobile and ubiquitous architecture for the medical control of chronic diseases through the use of intelligent devices: Using the architecture for patients with diabetes. Futur. Gener. Comput. Syst. 34:161---175, 2014.
[130]
Sebillo, M., Tortora, G., Tucci, M., Vitiello, G., Ginige, A., and Di Giovanni, P., Combining personal diaries with territorial intelligence to empower diabetic patients. J. Vis. Lang. Comput. 29:1---14, 2015.
[131]
Katib, A., Rao, D., Rao, P., Williams, K., and Grant, J., A prototype of a novel cell phone application for tracking the vaccination coverage of children in rural communities. Comput. Methods Programs Biomed. 122(2):215---228, 2015.
[132]
Lwin, M. O. et al., A 21st century approach to tackling dengue: Crowdsourced surveillance, predictive mapping and tailored communication. Acta Trop. 130(1):100---107, 2014.
[133]
Bresó, A., Martínez-Miranda, J., Fuster-García, E., and García-Gómez, J. M., A novel approach to improve the planning of adaptive and interactive sessions for the treatment of major depression. Int. J. Hum. Comput. Stud. 87:80---91, 2016.
[134]
Chakraborty, S., Ghosh, S. K., Jamthe, A., and Agrawala, D. P., Detecting mobility for monitoring patients with Parkinson's disease at home using RSSI in a wireless sensor network. Procedia Comput. Sci. 19:956---961, 2013.
[135]
Hermens, H., op den Akker, H., Tabak, M., Wijsman, J., and Vollenbroek, M., Personalized coaching systems to support healthy behavior in people with chronic conditions. J. Electromyogr. Kinesiol. 24(6):815---826, 2014.
[136]
Piotin, S., Benassarou, A., Blanchard, F., Nocent, O., and Bertin, E., Abdominal morphometric data acquisition using depth sensors. 2013 IEEE 15th Int. Conf. e-Health Netw., Appl. Serv., Healthcom 2013(Healthcom):653---657, 2013.
[137]
Moore, P., Thomas, A., Qassem, T., Bessis, N., and Hu, B., Monitoring patients with mental disorders. 2015 9th Int. Conf. Innov. Mobile Internet Serv. Ubiquitous Comput. 65---70, 2015.
[138]
Paulus, A., Meisen, P., Meisen, T., Jeschke, S., Czaplik, M., and Hirsch, F., AUDIME: Augmented disaster medicine. 2015 17th Int. Conf. E-Health Netw, Appl. Serv. (HealthCom). 342---345. 2015.
[139]
Niswar, M. et al., The design of wearable medical device for triaging disaster casualties in developing countries. 2015 Fifth Int. Conf. Digit. Info. Process. Commun. (ICDIPC). 207---212. 2015.
[140]
Ullah, F., Khelil, A., Sheikh, A. A., Felemban, E., and Bojan, H. M. A., Towards automated self-tagging in emergency health cases. 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services, Healthcom, Healthcom 2013:658---663, 2013.
[141]
Rodriguez, D., Heuer, S., Guerra, A., Stork, W., Weber, B., and Eichler, M., Towards automatic sensor-based triage for individual remote monitoring during mass casualty incidents. 2014 IEEE Int. Conf. Bioinform. Biomed. (BIBM). 544---551, 2014.
[142]
Beck, C., and Georgiou, J., Wearable, multimodal, vitals acquisition unit for intelligent field triage. Healthc. Technol. Lett. 3(3):189---196, 2016.
[143]
Besaleva, L. I., and Weaver, A. C., CrowdHelp: M-health application for emergency response improvement through crowdsourced and sensor-detected information. 2014 wireless telecommunications symposium. 1---5, 2014.
[144]
Ganz, A., Schafer, J. M., Tang, J., Yang, Z., Yi, J., and Ciottone, G., Urban search and rescue situational awareness using DIORAMA disaster management system. Proc. Eng. 107:349---356, 2015.
[145]
A. Renner et al., "RIPPLE: scalable medical telemetry system for supporting combat rescue," in National Aerospace Electr. Conf. Proc. IEEE, 2015, vol. 2015---Febru, pp. 228---232.
[146]
Gunasekaran, S. and Suresh, M., A novel control of disaster protection (NCDP) for pilgrims by pan technology. 2014 IEEE 8th international conference on intelligent systems and control: Green challenges and smart solutions, ISCO 2014 - proceedings. 103---107, 2014.
[147]
Adibi, S., A mobile health network disaster management system. 2015 Seventh Int. Conf. Ubiquitous Futu Netw. 424---428, 2015.
[148]
Sneha, S., and Varshney, U., A framework for enabling patient monitoring via mobile ad hoc network. Decis. Support Syst. 55(1):218---234, 2013.
[149]
Fratini, A., and Caleffi, M., Medical emergency alarm dissemination in urban environments. Telemat. Informatics 31(3):511---517, 2014.
[150]
Manfredi, S., Congestion control for differentiated healthcare service delivery in emerging heterogeneous wireless body area networks. IEEE Wirel. Commun. 21(2):80---90, 2014.
[151]
L. Van Dyk, "A Review Of telehealth service implementation frameworks," Int. J. Environ. Res. Public Health, vol. 11, no. 12, pp. 1279---1298, 2014.
[152]
Jeong, S., Youn, C. H., Shim, E. B., Kim, M., Cho, Y. M., and Peng, L., An integrated healthcare system for personalized chronic disease care in home-hospital environments. IEEE Trans. Inf. Technol. Biomed. 16(4):572---585, 2012.
[153]
Pertet, S., Pertet, S., Narasimhan, P., and Narasimhan, P., Causes of failure in web applications. Parallel Data Lab., no. December. 1---19, 2005.
[154]
Jin, X. et al., Dynamic scheduling of network updates. ACM SIGCOMM Comput. Commun. Rev. 44(4):539---550, 2014.
[155]
Bellod Cisneros, J. L. and Lund, O., KmerFinderJS: a client-server method for fast species typing of Bacteria over slow internet connections. Doi.Org, p. 145284, 2017.
[156]
Wood, A., Predicting client/server availability. Computer (Long. Beach. Calif). 28(4):41---48, 1995.
[157]
Zheng, G., Ning, Y., and Wang, M., Energy efficient geography-based data forwarding algorithm for multi-hop wireless sensor network. Proc. --- Int. Conf. Elect. Contrl. Eng., ICECE 2010:5207---5210, 2010.
[158]
Soto, J., Queiroz, S., and Nogueira, M., Managing sensing and cooperation to analyze PUE attacks in cognitive radio. Ad Hoc Networks," 2012 8Th Int. Conf. Netw. Serv. Manag. (Cnsm) 2012 Workshop Syst. Virtual. Manag. (Svm). 219---223, 2012.
[159]
Gogan, J. L., Davidson, E. J., and Proudfoot, J., The HealthCare.gov project. J. Inf. Technol. Teach. Cases 6(2):99---110, 2016.
[160]
Hu, P. F. et al., Reliable collection of real-time patient physiologic data from less reliable networks: A `monitor of monitors' system (MoMs). J. Med. Syst. 41(1):3, 2017.
[161]
Woo, M. W., Lee, J., and Park, K., A reliable IoT system for personal healthcare devices. Futur. Gener. Comput. Syst. 78:626---640, 2018.
[162]
Rocha, A. et al., Innovations in health care services: The CAALYX system. Int. J. Med. Inform. 82(11):e307---e320, 2013.
[163]
Seising, R. et al., Fuzziness and Medicine: Philosophical Reflections and Application Systems in Health Care. Vol. 302. Berlin, Heidelberg, Heidelberg: Springer, 2013.
[164]
Mazomenos, E. B. et al., A low-complexity ECG feature extraction algorithm for mobile healthcare applications. IEEE J. Biomed. Heal. Info. 17(2):459---469, 2013.
[165]
Li, H., and Tan, J., Body sensor network based context aware QRS detection. Pervasive Heal. Conf. Work. 2006 1(2):1---8, 2006.
[166]
Barbera, A. G. M., and Joseph, A., Medical Surge Capacity and Capability : A Management System for Integrating Medical and Health Resources During Large-Scale Emergencies. Washington, DC: US Department of Health and Human Services, 2004.
[167]
Kaiser Foundation, Trends in health care costs and spending. 2007.
[168]
Shih, D. H., Sen Chiang, H., Lin, B., and Bin Lin, S., An embedded mobile ECG reasoning system for elderly patients. IEEE Trans. Inf. Technol. Biomed. 14(3):854---865, 2010.
[169]
Sakanushi, K. et al., Electronic triage system for continuously monitoring casualties at disaster scenes. J. Ambient Intell. Humaniz. Comput. 4(5):547---558, 2013.
[170]
W. H. Who Organization, Disaster risk management for health fact sheets: Disaster risk management for health: Children health. Global Platform-May 2011. 2011.
[171]
Shnayder, V., Chen, B, Lorincz, K., Jones, T. R. F. F., and Welsh, M., Sensor networks for medical care. Proc. 3rd Int. Conf. Embed. networked Sens. Syst. - SenSys `05. 314, 2005.
[172]
Ahn, J., Heo, J., Lim, S., and Kim, W., A study on ubiquitous healthcare system based on LBS. World Congress Eng. 2008, Vols I-Ii I:270---273, 2008.
[173]
Xiang, Y., and Zhuang, J., A medical resource allocation model for serving emergency victims with deteriorating health conditions. Ann. Oper. Res. 236(1):177---196, 2016.
[174]
Martí, R., Robles, S., Martín-Campillo, A., and Cucurull, J., Providing early resource allocation during emergencies: the mobile triage tag. J. Netw. Comput. Appl. 32(6):1167---1182, 2009.
[175]
Khelil, A., Pa2Pa: Patient to patient communication for emergency response support," 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services, HEALTHCOM 2011. 237---240, 2011.
[176]
Gao, T. et al., The advanced health and disaster aid network: a light-weight wireless medical system for tiage. IEEE Trans. Biomed. Circ. Syst. 1(3):203---216, 2007.
[177]
Y. Qin, L. Li, X. Zhong, Y. Yang, and C. L. Gwee, "A Cross-Layer QoS design with energy and traffic balance aware for different types of traffic in MANETs," Wirel. Pers. Commun., vol. 85, no. 3, pp. 1429---1449, 2015.
[178]
Auerbach, P. S., Health and medical aspects of disaster preparedness, vol. 265, no. 18. Springer Science & Business Media, 1991.
[179]
Smith, E., and Macdonald, R., Managing health information during disasters. HIM J. 35(2):8---13, 2006.
[180]
Bicen, A. O., and Akan, O. B., Reliability and congestion control in cognitive radio sensor networks. Ad Hoc Netw. 9(7):1154---1164, 2011.
[181]
Palozzi, G., Binci, D., and Appolloni, A., E-health and co-production: Critical drivers for chronic diseases management. Serv. Bus. Model Innov. Healthcare Hos. Manag. 269---296, 2017.
[182]
C. Kateretse, G.-W. Lee, and E.-N. Huh, "A Practical Traffic Scheduling scheme for differentiated Services of Healthcare Systems on wireless sensor networks," Wirel. Pers. Commun., vol. 71, no. 2, pp. 909---927, 2013.
[183]
Diallo, O., Rodrigues, J. J. P. C., and Sene, M., Real-time data management on wireless sensor networks: a survey. J. Netw. Comput. Appl. 35(3):1013---1021, 2012.
[184]
Cardellini, V., Colajanni, M., and Yu, P. S., Dynamic load balancing on web-server systems. IEEE Internet Comput. 3(3):28---39, 1999.
[185]
Duong-Ba, T., Nguyen, T., Bose, B., and Tran, D. A., Distributed client-server assignment for online social network applications. IEEE Trans. Emerg. Top. Comput. 2(4):422---435, 2014.
[186]
Gehr, C. R., Von Behren, P. D., Williams, M. P., and Wood, R. B., Dynamic server switching for maximum server availability and load balancing." Google Patents, 27-Oct-1998.
[187]
Labovitz, C., Malan, G. R., and Jahanian, F., Internet routing instability - networking, IEEE/ACM transactions on. IEEE/ACM Trans. Netw. 6(5):515---527, 1998.
[188]
Salatge, N., and Fabre, J. C., Fault tolerance connectors for unreliable web services. Proc. Int. Conf. Dependable Syst. Networks, pp. 51---60, 2007.
[189]
Mani, D., and Mahendran, A., Availability modelling of fault tolerant cloud computing system. Int. J. Intell. Eng. Syst. 10(1):154---165, 2017.
[190]
Tang, D., Yu, J., Chen, X., and Makis, V., An optimal condition-based maintenance policy for a degrading system subject to the competing risks of soft and hard failure. Comput. Ind. Eng. 83:100---110, 2015.
[191]
Harper, R. E., Salapura, V., and Viswanathan, M., Automatic management of server failures. Google Patents, 07-Mar-2017.
[192]
Yassen, M. F., and Tarabia, A. M. K., Transient analysis of Markovian queueing system with balking and reneging subject to catastrophes and server failures. Appl. Math. Inf. Sci. 11(4):1041---1047, 2017.
[193]
Z. Zheng, Y. Zhang, and M. R. Lyu, "Distributed QoS evaluation for real-world Web services," ICWS 2010---2010 IEEE 8th Int. Conf. Web Serv. 83---90, 2010.
[194]
Armbrust, M. et al., A view of cloud computing. Commun. ACM 53(4):50, 2010.
[195]
Slotwiner, D. et al., HRS expert consensus statement on remote interrogation and monitoring for cardiovascular implantable electronic devices. Hear. Rhythm 12(7):e69---e95, 2015.
[196]
Boatin, A. A. et al., Wireless vital sign monitoring in pregnant women: A functionality and acceptability study. Telemed. e-Health 22(7):564---571, 2016.
[197]
Liddy, C., Dusseault, J. J., Dahrouge, S., Hogg, W., Lemelin, J., and Humbert, J., Telehomecare for patients with multiple chronic illnesses: Pilot study. Can. Fam. Physician 54(1):58---65, 2008.
[198]
Zaidan, A. A. et al., A survey on communication components for IoT-based technologies in smart homes. Telecommun. Syst. 1---25, 2018.
[199]
Xiang, Y., Liu, Z., Liu, R., Sun, W., and Wang, W., GeoSVR: A map-based stateless VANET routing. Ad Hoc Netw. 11(7):2125---2135, 2013.
[200]
Bernocchi, P. et al., Healthcare continuity from hospital to territory in Lombardy: TELEMACO project. Am. J. Manag. Care 18(3):101---108, 2012.
[201]
Bashshur, R. L. et al., The empirical foundations of telemedicine interventions for chronic disease management. Telemed. e-Health 20(9):769---800, 2014.
[202]
Rojahn, K. et al., Remote monitoring of chronic diseases: A landscape assessment of policies in four European countries. PLoS One 11(5):1---15, 2016.
[203]
Medical Technology Assoc. of Australia Limited, A telehealth strategy for Australia: Supporting patients in the community. Retrieved from San Diego, USA Aust. M. T. A. o. (2012). A telehealth Strateg. Aust. Support. patients community. Retrieved from http//mtaa.org.au/docs/position-papers/supporting-a-telehealth-strategyfor-australia-release-version-m, no. may, 2012.
[204]
Clark, R. A., Inglis, S. C., McAlister, F. A., Cleland, J. G. F., and Stewart, S., Telemonitoring or structured telephone support programmes for patients with chronic heart failure: Systematic review and meta-analysis. Br. Med. J. 334(7600):942---945, 2007.
[205]
Chan, M., Estève, D., Fourniols, J. Y., Escriba, C., and Campo, E., Smart wearable systems: current status and future challenges. Artif. Intell. Med. 56(3):137---156, 2012.
[206]
Baig, M. M., and Gholamhosseini, H., Smart health monitoring systems: an overview of design and modeling. J. Med. Syst. 37(2), 2013.
[207]
Chowdhury, M., Mciver, W., and Light, J., Data association in remote health monitoring systems. IEEE Commun. Mag. 50(6):144---149, 2012.
[208]
Beratarrechea, A., Lee, A. G., Willner, J. M., Jahangir, E., Ciapponi, A., and Rubinstein, A., The impact of mobile health interventions on chronic disease outcomes in developing countries: a systematic review. Telemed. e-Health 20(1):75---82, 2014.
[209]
Kao, D. P. et al., Impact of a telehealth and care management program on all-cause mortality and healthcare utilization in patients with heart failure. Telemed. e-Health 22(1):2---11, 2016.
[210]
Mansor, H., Meskam, S. S., Zamery, N. S., Rusli, N. Q. A. M., and Akmeliawati, R., Portable heart rate measurement for remote health monitoring system. 2015 10th Asian Contrl. Conf., no. June 2013. 1---5, 2015.
[211]
Zhang, Z., Buckler, E. S., Casstevens, T. M., and Bradbury, P. J., Software engineering the mixed model for genome-wide association studies on large samples, vol. 10, no. 6. IEEE Computer Society, 2009.
[212]
Winkler, S. et al., A new telemonitoring system intended for chronic heart failure patients using mobile telephone technology - feasibility study. Int. J. Cardiol. 153(1):55---58, 2011.
[213]
Klersy, C., De Silvestri, A., Gabutti, G., Regoli, F., and Auricchio, A., A meta-analysis of remote monitoring of heart failure patients. J. Am. Coll. Cardiol. 54(18):1683---1694, 2009.
[214]
Zhang, J., Goode, K. M., Cuddihy, P. E., and Cleland, J. G. F., Predicting hospitalization due to worsening heart failure using daily weight measurement: Analysis of the trans-European network-home-care management system (TEN-HMS) study. Eur. J. Heart Fail. 11(4):420---427, 2009.
[215]
Sockolow, P. S., Bowles, K. H., Adelsberger, M. C., Chittams, J. L., and Liao, C., Impact of homecare electronic health record on timeliness of clinical documentation, reimbursement, and patient outcomes. Appl. Clin. Inform. 5(2):445---462, 2014.
[216]
Durisko, C., McCue, M., Doyle, P. J., Dickey, M. W., and Fiez, J. A., A flexible and integrated system for the remote Acquisition of Neuropsychological Data in stroke research. Telemed. e-Health 22(12):1032---1040, 2016.
[217]
Zane, R. D. and Biddinger, P., Home health patient assessment tools: Preparing for emergency triage. Abt Associates, 2011.
[218]
Steele, R., Lo, A., Secombe, C., and KuenWong, Y., <Elderly persons' perception and acceptance of using wireless sensor networks to assist healthcare.pdf>. Int. J. Med. Inform. 7(8):788---801, 2009.
[219]
Fraile, J. A., Bajo, J., Corchado, J. M., and Abraham, A., Applying wearable solutions in dependent environments. IEEE Trans. Inf. Technol. Biomed. 14(6):1459---1467, 2010.
[220]
Safavi, S., and Shukur, Z., Conceptual privacy framework for health information on wearable device. PLoS One 9(12):e114306, 2014.
[221]
Okura, T. et al., The importance of walking for control of blood pressure: Proof using a telemedicine system. Telemed. e-Health 22(12):1019---1023, 2016.
[222]
Nguyen, T., Khosravi, A., Creighton, D., and Nahavandi, S., Medical data classification using interval type-2 fuzzy logic system and wavelets. Appl. Soft Comput. 30(4):812---822, 2015.
[223]
Brunetti, N. D. et al., Corrigendum to `Telemedicine for cardiovascular disease continuum: A position paper from the Italian Society of Cardiology Working Group on Telecardiology and Informatics' {Int J Cardiol 184 (2015) 452---458}. Int. J. Cardiol. 215:546, 2016.
[224]
Westergren, H., Ferm, M., and Häggström, P., First evaluation of the paediatric version of the Swedish rapid emergency triage and treatment system shows good reliability. Acta Paediatr. Int. J. Paediatr. 103(3):305---308, 2014.
[225]
Zaidan, A. A. et al., A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: Coherent taxonomy, open issues and recommendation pathway solution. Health Technol. (Berl). 1---16, 2018.
[226]
Besaleva, L. I., and Weaver, A. C., Mobile electronic triaging for emergency response information. 2013 IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining. 1092---1093, 2013.
[227]
Rekha, R., Mathambigai, T. G., and Vidhyapriya, R., Secure medical data transmission in body area sensor networks using dynamic biometrics and steganography. Bonfring Int. J. Softw. Eng. Soft Comput. 2(1):5---11, 2012.
[228]
Azeez, D., Ali, M. A. M., Gan, K. B., and Saiboon, I., Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department. Springerplus 2(1):1---10, 2013.
[229]
Farrohknia, N. et al., Emergency department triage scales and their components: a systematic review of the scientific evidence. Scand. J. Trauma. Resusc. Emerg. Med. 19(1):42, 2011.
[230]
Brunetti, N. D., De Gennaro, L., Dellegrottaglie, G., Di Giuseppe, G., Antonelli, G., and Di Biase, M., All for one, one for all: Remote telemedicine hub pre-hospital triage for public Emergency Medical Service 1---1-8 in a regional network for primary PCI in Apulia, Italy. Eur. Res. Telemed. 3(1):9---15, 2014.
[231]
Merzougui, R., Adaptation of an intelligent mobile assistant medical (IMAM) of the heterogeneous data for the telemedicine services: Design and implementation. Wirel. Pers. Commun. 84(4):3091---3107, 2015.
[232]
Godfrey, B., et al, Emergency Medical Guidelines. Sunshine Act Florida, no. 3. 245, 2000.
[233]
Ashour, O. M., and Okudan, G. E., Fuzzy AHP and utility theory based patient sorting in emergency departments. Int. J. Collab. Enterp. 1(3/4):332, 2010.
[234]
R. M. Dorthea Christensen, Nanna Martin Jensen and & B. B. H. P. SØren Steemann Rudolph, "Nurse-administered early warning score system can be used for emergency department triage," Dan. Med. Bul., vol. 58, no. 6, p. A4221, 2011.
[235]
Hung, C. Y., Chang, P. Y., and Huang, Y. H., Comparison of fuzzy-based MCDM and non-fuzzy MCDM in setting a new fee schedule for orthopedic procedures in Taiwan's national health insurance program. WSEAS Trans. Math. 5(1):149---153, 2006.
[236]
Beveridge, R. et al., Implementation guidelines for the Canadian Emergency Department Triage & Acuity Scale ( CTAS ). Can. ED Triage Acuity Scale. 32, 1998.
[237]
Zarabzadeh, A. et al., Variation in health care providers' perceptions: Decision making based on patient vital signs. J. Decis. Syst. 22(3):168---189, 2013.
[238]
Widgren, B. R., and Jourak, M., Medical emergency triage and treatment system (METTS): A new protocol in primary triage and secondary priority decision in emergency medicine. J. Emerg. Med. 40(6):623---628, 2011.
[239]
Zachariasse, J. M. et al., Validity of the Manchester triage system in emergency care: a prospective observational study. PLoS One 12(2):e0170811, 2017.
[240]
Christensen, D., Jensen, N. M., MaalØe, R., Rudolph, S. S., Belhage, B., and Perrild, H., Low compliance with a validated system for emergency department triage. Dan. Med. Bull. 58(6):A4294, 2011.
[241]
Auffray, C. et al., Making sense of big data in health research: Towards an EU action plan. Genome Med. 8(1):1---13, 2016.
[242]
Lerner, E. B. et al., Mass casualty triage: An evaluation of the science and refinement of a national guideline. Disaster Med. Publ. Health Prep. 5(2):129---137, 2011.
[243]
Tindale, R., Paediatric triage tape. Emerg. Nurse 13(9):6, 2006.
[244]
Wiseman, D. B., Ellenbogen, R., and Shaffrey, C. I., Triage for the neurosurgeon. Neurosurg. Focus 12(3):E5, 2002.
[245]
Takagi, T., and Sugeno, M., Fuzzy identification of systems and its applications to modeling and control. EEE Trans. Syst., Man, Cybernat. 15(Elsevier):116132, 1985.
[246]
Sugeno, M., Yakusawa, T., On fuzzy, and undefined. A fuzzy-logic-based approach to qualitative modeling. Pdfs.semanticscholar.org. 1993.
[247]
Wizig, L. H., Method and system for providing a user-selected healthcare services package and healthcare services panel customized based on a user's selections. Google Patents, 11-May-2004.
[248]
Barsan, W. G., Brott, T. G., Broderick, J. P., Haley, E. C., Levy, D. E., and Marler, J. R., Time of hospital presentation in patients with acute stroke. Arch. Intern. Med. 153(22):2558---2561, 1993.
[249]
Robinson, R. G., Kubos, K. L., Starr, L. B., Rao, K., and Price, T. R., Mood disorders in stroke patients: Importance of lesion location. Brain 107(Pt 1):81---93, 1984.
[250]
Fitzgerald, J. D., Soohoo, N. F., Losina, E., and Katz, J. N., Potential impact on patient residence to hospital travel distance and access to care under a policy of preferential referral to high-volume knee replacement hospitals. Arthritis Care Res. 64(6):890---897, 2012.
[251]
Nicholl, J., West, J., Goodacre, S., and Turner, J., The relationship between distance to hospital and patient mortality in emergencies: an observational study. Emerg. Med. J. 24(9):665---668, 2007.
[252]
Wei, L. et al., Impact on mortality following first acute myocardial infarction of distance between home and hospital: Cohort study. Heart 94(9):1141---1146, 2008.
[253]
De Souza, V. C., and Strachan, D. P., Relationship between travel time to the nearest hospital and survival from ruptured abdominal aortic aneurysms: record linkage study. J. Publ. Health (Bangkok). 27(2):165---170, 2005.
[254]
Takakuwa, K. M., Shofer, F. S., and Abbuhl, S. B., Strategies for dealing with emergency department overcrowding: A one-year study on how bedside registration affects patient throughput times. J. Emerg. Med. 32(4):337---342, 2007.
[255]
Cassar, K., Godden, D. J., and Duncan, J. L., Community mortality after ruptured abdominal aortic aneurysm is unrelated to the distance from the surgical Centre. Br. J. Surg. 88(10):1341---1343, 2001.
[256]
Buchmueller, T. C., Jacobson, M., and Wold, C., How far to the hospital?. The effect of hospital closures on access to care. J. Health Econ. 25(4):740---761, 2006.
[257]
Cox, I., Roberts, L., and Stevens, S., How can we improve patient care? Commun. Eye Health 15(41):1---3, 2002.
[258]
Grossmann, F. F., Delport, K., and Keller, D. I., Emergency severity index. Notfall + Rettungsmedizin 12(4):290---292, 2009.
[259]
WHO, Surgical Care at the District Hospital. World Health Organization, 2013.
[260]
Colin, D. J. and I. Taylor, Recent advances in surgery 33, vol. 27. CRC Press, 2010.
[261]
Https://bestdoctors.com/, "Retreved From." {Online}. Available: https://bestdoctors.com/.
[262]
Clohessy, S., and Ehlers, A., PTSD symptoms and coping in ambulance service workers. Br. J. Clin. Psychol. 38(3):32, 1999.
[263]
Ramesh, A., and Kumar, S., Triage, monitoring, and treatment of mass casualty events involving chemical, biological, radiological, or nuclear agents. J. Pharm. Bioallied Sci. 2(3):239, 2010.
[264]
Jadhav, A. and Sonar, R. Analytic hierarchy process (AHP), Weighted Scoring Method (WSM), and Hybrid Knowledge Based System (HKBS) for Software Selection: A Comparative Study," in 2009 Second International Conference on Emerging Trends in Engineering & Technology. 991---997. 2009.
[265]
Keeney, R. L. and Raiffa, H., Decisions with multiple objectives: Preference and value tradeoffs. Cambridge university press, 1976.
[266]
Valerie, B. and Stewart, T. J., Multiple criteria decision analysis: An integrated approach. Springer Science & Business Media, 2002.
[267]
Malczewski, J., GIS and multicriteria decision analysis. John Wiley & Sons, 1999.
[268]
Petrovic-Lazarevic, S., and Abraham, A., Hybrid fuzzy-linear programming approach for multi criteria decision making problems. Neural, Parallel Sci. Comput. 11(1 & 2):53---68, 2004.
[269]
Zionts, S., MCDM--If not a roman numeral, then what? Interf. (Providence). 9(4):94---101, 1979.
[270]
Baltussen, R., and Niessen, L., Priority setting of health interventions: the need for multi-criteria decision analysis. Cost Eff. Resour. Alloc. 4(1):14, 2006.
[271]
Thokala, P. et al., Multiple criteria decision analysis for health care decision making - an introduction: Report 1 of the ISPOR MCDA emerging good practices task force. Value Heal. 19(1):1---13, 2016.
[272]
Oliveira, M., Fontes, D. B. M. M., and Pereira, T., Multicriteria decision making: A case study in the automobile industry. Ann. Manag. Sci. 3(1):109, 2014.
[273]
Whaiduzzaman, M., Gani, A., Anuar, N. B., Shiraz, M., Haque, M. N., and Haque, I. T., Cloud service selection using multicriteria decision analysis. Sci. World J. 2014:459375, 2014.
[274]
Hwang, C.-L., and Yoon, K., "Multiple attribute decision methods and applications., 1981 2011.
[275]
M. Aruldoss, "A Survey On multi criteria decision making methods and its applications," Am. J. Inf. Syst., vol. 1, no. 1, pp. 31---43, 2013.
[276]
Wang, J. J., Jing, Y. Y., Zhang, C. F., and Zhao, J. H., Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 13(9):2263---2278, 2009.
[277]
Haralambopoulos, D. A., and Polatidis, H., Renewable energy projects: Structuring a multi-criteria group decision-making framework. Renew. energy 28(6):961---973, 2003.
[278]
L. Qu and Y. Chen, "A hybrid MCDM method for route selection of multimodal transportation network," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5263 LNCS, no. PART 1, pp. 374---383, 2008.
[279]
S. P. Gbanie, P. B. Tengbe, J. S. Momoh, J. Medo, and V. T. S. Kabba, "Modelling landfill location using geographic information systems (GIS) and multi-criteria decision analysis (MCDA): Case study Bo, southern Sierra Leone," Appl. Geogr., vol. 36, no. January, pp. 3---12, 2013.
[280]
Ligmann-Zielinska, A., and Jankowski, P., Impact of proximity-adjusted preferences on rank-order stability in geographical multicriteria decision analysis. J. Geogr. Syst. 14(2):167---187, 2012.
[281]
Phillips, L., and Costa, C. B. E., Transparent priorisation, budgeting and resource allocation with multicriteria decision analysis and decision conferencing. Ann. Oper. Res. 154(1):51---68, 2007.
[282]
Adunlin, G., Diaby, V., and Xiao, H., Application of multicriteria decision analysis in health care: A systematic review and bibliometric analysis. Health Expect. 18(6):1894---1905, 2015.
[283]
Diaby, V., Campbell, K., and Goeree, R., Multi-criteria decision analysis (MCDA) in health care: a bibliometric analysis. Oper. Res. Heal. Care 2(1---2):20---24, 2013.
[284]
Marsh, K., Dolan, P., Kempster, J., and Lugon, M., Prioritizing investments in public health: a multi-criteria decision analysis. J. Publ. Heal. (United Kingdom) 35(3):460---466, 2013.
[285]
Ho, W., Integrated analytic hierarchy process and its applications - a literature review. Eur. J. Oper. Res. 186(1):211---228, 2008.
[286]
Liberatore, M. J., and Nydick, R. L., The analytic hierarchy process in medical and health care decision making: A literature review. Eur. J. Oper. Res. 189(1):194---207, 2008.
[287]
Guindo, L. A. et al., From efficacy to equity: Literature review of decision criteria for resource allocation and healthcare decisionmaking. Cost Eff. Resour. Alloc. 10(1):9, 2012.
[288]
Marsh, K., Lanitis, T., Neasham, D., Orfanos, P., and Caro, J., Assessing the value of healthcare interventions using multi-criteria decision analysis: a review of the literature. Pharmacoeconomics 32(4):345---365, 2014.
[289]
Mühlbacher, A., and Kaczynski, A., Making good decisions in healthcare with multi-criteria decision analysis: The use, current research and future development of MCDA. Appl. Health Econ. Health Policy 14(1):29---40, 2016.
[290]
Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., and Abdulnabi, M., Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. J. Biomed. Inform. 53(0):390---404, 2015.
[291]
Mansooreh, M. and Pet-Edwards, J., Technical briefing: Making multiple-objective decisions. Inst. Electr. Ve electron. Eng. Inc., IEEE Comput. Soc. press. USA, 1997.
[292]
E. Triantaphyllou, "Multi-criteria decision making methods: A comparative study," in In Multi-criteria decision making methods: A comparative study, vol. 44, Springer. 5---12, 2000.
[293]
Triantaphyllou, E., and Shu, B., Multi-criteria decision making: an operations research approach. Encycl. Electr. Electron. Eng. 15(1998):175---186, 1998.
[294]
Yoon, K. and Hwang, C.-L., Multiple Attribute Decision Making: An Introduction, vol. 104. Sage publications, 1995.
[295]
Abdullateef, B. N., Elias, N. F., Mohamed, H., Zaidan, A. A., and Zaidan, B. B., An evaluation and selection problems of OSS-LMS packages. Springerplus 5(1):1---35, 2016.
[296]
Jumaah, F. M., Zaidan, A. A., Zaidan, B. B., Bahbibi, R., Qahtan, M. Y., and Sali, A., Technique for order performance by similarity to ideal solution for solving complex situations in multi-criteria optimization of the tracking channels of GPS baseband telecommunication receivers. Telecommun. Syst. 1---19, 2017.
[297]
Kiah, M. L. M., Haiqi, A., Zaidan, B. B., and Zaidan, A. A., Open source EMR software. Comput. Methods Prog. Biomed. 117(2):360---382, 2014.
[298]
Qader, M. A., Zaidan, B. B., Zaidan, A. A., Ali, S. K., Kamaluddin, M. A., and Radzi, W. B., A methodology for football players selection problem based on multi-measurements criteria analysis. Meas. J. Int. Meas. Confed. 111:38---50, 2017.
[299]
Yas, Q. M., Zadain, A. A., Zaidan, B. B., Lakulu, M. B., and Rahmatullah, B., Towards on develop a framework for the evaluation and benchmarking of skin detectors based on artificial intelligent models using multi-criteria decision-making techniques. Int. J. Pattern Recognit. Artif. Intell. 31(3):1759002, 2017.
[300]
Salman, O. H., Zaidan, A. A., Zaidan Naserkalid, B. B., and Hashim, M., Novel methodology for triage and prioritizing using `big data' patients with chronic heart diseases through telemedicine environmental. Int. J. Inf. Technol. Decis. Mak. 16(5):1211---1245, 2017.
[301]
Yas, Q. M., Zaidan, A. A., Zaidan, B. B., Rahmatullah, B., and Karim, H. A., Comprehensive insights into evaluation and benchmarking of real-time skin detectors: Review, open issues & challenges, and recommended solutions. Measurement, 2017.
[302]
Zaidan, B. B., Zaidan, A. A., Abdul Karim, H., and Ahmad, N. N., Anew approach based on multi-dimensional evaluation and benchmarking for data hiding techniques. Int. J. Inf. Technol. Decis. Mak. 1---42, 2017.
[303]
Zaidan, B. B., and Zaidan, A. A., Software and hardware FPGA-based digital watermarking and steganography approaches: Toward new methodology for evaluation and benchmarking using multi-criteria decision-making techniques. J. Circuits, Syst. Comput. 26(7):1750116, 2017.
[304]
Zaidan, B. B., and Zaidan, A. A., Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement 117:277---294, 2017.
[305]
Kalid, N., Zaidan, A. A., Zaidan, B. B., Salman, O. H., Hashim, M., and Muzammil, H., Based real time remote health monitoring systems: A review on patients prioritization and related `big data' using body sensors information and communication technology. J. Med. Syst. 42(2):69, 2018.
[306]
Jumaah, F. M., Zadain, A. A., Zaidan, B. B., Hamzah, A. K., and Bahbibi, R., Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Meas. J. Int. Meas. Confed. 118:83---95, 2018.
[307]
Shih, H. S., Shyur, H. J., and Lee, E. S., An extension of TOPSIS for group decision making. Math. Comput. Model. 45(7---8):801---813, 2007.
[308]
Saaty, T. L., and Ozdemir, M. S., Why the magic number seven plus or minus two. Math. Comput. Model. 38(3---4):233---244, 2003.
[309]
D. Lesmes, M. Castillo, and R. Zarama, "Application of the Analytic Network Process (ANP) to establish weights in order to re-accredit a program of a university. Proc. 10th Int. Sym. Anal. Hierarchy Process 29, 2009.
[310]
Saaty Thomas, L., The Analytic Hierarchy Process. New York: McGrow-Hill, 1980.
[311]
Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., and Hussain, M., Evaluation and selection of opensource EMR software packages. Elsevier 53:N/a, 2014.
[312]
Nilsson, H., Nordström, E.-M., and Öhman, K., Decision support for participatory Forest planning using AHP and TOPSIS. Forests 7(5):100, 2016.
[313]
Jă?drkiewicz, R., Tsakovski, S., Lavenu, A., Namieśnik, J., and Tobiszewski, M., Simultaneous grouping and ranking with combination of SOM and TOPSIS for selection of preferable analytical procedure for furan determination in food. Talanta 178:928---933, 2018.
[314]
Kandakoglu, A., Celik, M., and Akgun, I., A multi-methodological approach for shipping registry selection in maritime transportation industry. Math. Comput. Model. 49(3---4):586---597, 2009.
[315]
Matin, M. Ed., Wireless sensor networks - technology and protocols. InTech, 2012.
[316]
Yaacoub, E. and Abu-dayya, A., Multihop routing for energy efficiency in wireless sensor networks. INTECH Open Access Publisher, 2012.
[317]
Fan, X., Du, F., Guo, J., and Zhang, J., Energy independent clustering routing algorithm for wireless sensor network. 2014 11th Int. Conf. Fuzzy Syst. Knowledge Discov. (FSKD). 845---849, 2014.
[318]
Liaqat, T., Javaid, N., Ali, S. M., Imran, M., and Alnuem, M., Depth-based energy-balanced hybrid routing protocol for underwater WSNs. 2015 Int. Conf. Intell. Netw. Collab. Syst. 262---267, 2015.
[319]
Yamamoto, Y., Adding a dummy data or discarding a portion of data in a bus repeater buffer memory for a second data transfer to a second bus. Google Patents, 17-Sep-2002.
[320]
Lee, J.-M., Lee, H.-G., Lee, S.-C., Cho, H., and Kim, S.-T., Liquid crystal display with dummy data driving to produce edge column compensation. Google Patents, 31-Aug-1999.
[321]
Miyahara, S., Tsuji, M., Iizuka, C., Hasegawa, T., and Taoka, F., On the evaluation of economic benefits of Japanese telemedicine and factors for its promotion. Telemed. J. E. Health. 12(6):691---697, 2006.
[322]
Connell, F., Diehr, P., and Hart, L. G., The use of large data bases in health care studies. Annu. Rev. Public Heal. 8(1):51---74, 1987.
[323]
Lee, M. and Chung, C., A user similarity calculation based on the location for social network services," in Database Systems for Advanced Applications, vol. 6587 LNCS, no. PART 1, Springer, Berlin, Heidelberg. 38---52, 2011.
[324]
Lahby, M., Cherkaoui, L., and Adib, A., A novel ranking algorithm based network selection for heterogeneous wireless access. J. Netw. 8(2):263---272, 2013.
[325]
Saksrisathaporn, K., Bouras, A., Reeveerakul, N., and Charles, A., Application of a decision model by using an integration of AHP and TOPSIS approaches within humanitarian operation life cycle. Int. J. Inf. Technol. Decis. Mak. 15(4):887---918, 2016.
[326]
Saaty, T. L., A scaling model for priorities in hierarchical structures. J. Math. Psychol. 15(3):213---281, 1977.
[327]
Wind, Y., and Saaty, T. L., Marketing applications of the analytic hierarchy process. Manag. Sci. 26(7):641---658, 1980.
[328]
Ahmadi, H., Nilashi, M., and Ibrahim, O., Organizational decision to adopt hospital information system: An empirical investigation in the case of Malaysian public hospitals. Int. J. Med. Inform. 84(3):166---188, 2014.
[329]
Ar, I. M., and Kurtaran, A., Evaluating the relative efficiency of commercial banks in Turkey: An integrated AHP/DEA approach. Int. Bus. Res. 6(4):129, 2013.
[330]
Lam, K., and Zhao, X., An application of quality function deployment to improve the quality of teaching. Int. J. Qual. Reliab. Manag. 15(4):389---413, 1998.
[331]
Pecchia, L., Bath, P. A., Pendleton, N., and Bracale, M., Analytic hierarchy process (AHP) for examining healthcare professionals' assessments of risk factors: The relative importance of risk factors for falls in community-dwelling older people. Methods Inf. Med. 50(5):435---444, 2011.
[332]
Sherekar, V., and Tatikonda, M., Impact of factor affecting on labour productivity in construction projects by AHP method. Int. J. Eng. Sci. Comput. 6(6):6771---6775, 2016.
[333]
Goldberger, A. L. et al., PhysioBank, PhysioToolkit, and PhysioNet : Components of a new research resource for complex physiologic signals. Circulation 101(23):e215---e220, 2000.

Cited By

View all
  • (2023)Rough Fermatean fuzzy decision-based approach for modelling IDS classifiers in the federated learning of IoMT applicationsNeural Computing and Applications10.1007/s00521-023-08933-y35:30(22531-22549)Online publication date: 13-Aug-2023
  • (2022)Diagnosis-Based Hybridization of Multimedical Tests and Sociodemographic Characteristics of Autism Spectrum Disorder Using Artificial Intelligence and Machine Learning TechniquesInternational Journal of Telemedicine and Applications10.1155/2022/35515282022Online publication date: 1-Jan-2022
  • (2022)Taxonomy of Machine Learning Safety: A Survey and PrimerACM Computing Surveys10.1145/355138555:8(1-38)Online publication date: 23-Dec-2022
  • Show More Cited By
  1. Real-Time Fault-Tolerant mHealth System: Comprehensive Review of Healthcare Services, Opens Issues, Challenges and Methodological Aspects

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of Medical Systems
      Journal of Medical Systems  Volume 42, Issue 8
      August 2018
      354 pages

      Publisher

      Plenum Press

      United States

      Publication History

      Published: 01 August 2018

      Author Tags

      1. Fault-tolerant
      2. Healthcare services
      3. Medical Centre failure
      4. Network failure
      5. Sensor
      6. Server failure
      7. Telemedicine
      8. Triage
      9. mHealth

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 10 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Rough Fermatean fuzzy decision-based approach for modelling IDS classifiers in the federated learning of IoMT applicationsNeural Computing and Applications10.1007/s00521-023-08933-y35:30(22531-22549)Online publication date: 13-Aug-2023
      • (2022)Diagnosis-Based Hybridization of Multimedical Tests and Sociodemographic Characteristics of Autism Spectrum Disorder Using Artificial Intelligence and Machine Learning TechniquesInternational Journal of Telemedicine and Applications10.1155/2022/35515282022Online publication date: 1-Jan-2022
      • (2022)Taxonomy of Machine Learning Safety: A Survey and PrimerACM Computing Surveys10.1145/355138555:8(1-38)Online publication date: 23-Dec-2022
      • (2022)Extension of interval-valued Pythagorean FDOSM for evaluating and benchmarking real-time SLRSs based on multidimensional criteria of hand gesture recognition and sensor glove perspectives▪Applied Soft Computing10.1016/j.asoc.2021.108284116:COnline publication date: 1-Feb-2022
      • (2022)Rescuing emergency cases of COVID-19 patients: An intelligent real-time MSC transfusion framework based on multicriteria decision-making methodsApplied Intelligence10.1007/s10489-021-02813-552:9(9676-9700)Online publication date: 1-Jul-2022
      • (2022)Hospital selection framework for remote MCD patients based on fuzzy q-rung orthopair environmentNeural Computing and Applications10.1007/s00521-022-07998-535:8(6185-6196)Online publication date: 17-Nov-2022
      • (2022)Early automated prediction model for the diagnosis and detection of children with autism spectrum disorders based on effective sociodemographic and family characteristic featuresNeural Computing and Applications10.1007/s00521-022-07822-035:1(921-947)Online publication date: 24-Sep-2022
      • (2022)A new extension of FDOSM based on Pythagorean fuzzy environment for evaluating and benchmarking sign language recognition systemsNeural Computing and Applications10.1007/s00521-021-06683-334:6(4937-4955)Online publication date: 1-Mar-2022
      • (2021)IoT Cloud Security ReviewACM Computing Surveys10.1145/344762554:4(1-36)Online publication date: 3-May-2021
      • (2021)A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methodsNeural Computing and Applications10.1007/s00521-020-05020-433:4(1029-1054)Online publication date: 1-Feb-2021
      • Show More Cited By

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media