Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Modeling and performance analysis of Schottky barrier carbon nanotube field effect transistor SB-CNTFET

Published: 01 September 2017 Publication History

Abstract

The performance of a Schottky barrier carbon nanotube field effect transistor (SB-CNTFET) has been analyzed by means of a compact model. We present a study of the physical and geometrical parameters and their effects on the static and dynamic performance of the SB-CNTFET. For the static regime, we determine the variations in the current---voltage characteristics for three values of the potential barrier and the influence of the barrier on the on-state current. Also, we report the effect of the oxide thickness on the static performance. The relationship between the current---voltage characteristics and the nanotube diameter for different values of drain---source voltage is investigated. For dynamic systems, we study the effect of the gate---source voltage, the chirality and the CNT diameter on the transition frequency. It has been observed that the performance of the SB-CNTFET can be significantly controlled by changing some physical and geometrical parameters of the device.

References

[1]
Dürkop, T., Kim, B.M., Fuhrer, M.S.: Properties and applications of high-mobility semiconducting nanotubes. J. Phys. Condens. Matter 16(18), R553 (2004)
[2]
Kim, B.M., Brintlinger, T., Cobas, E., Zheng, H., Fuhrer, M.S., Yu, Z., Droopad, R., Ramdani, J., Eisenbeiser, K.: High-performance carbon nanotube transistors on SrTiO$$_3$$3/Si substrates. Appl. Phys. Lett. 84(11), 1946 (2004)
[3]
Javey, A., Guo, J., Paulsson, M., Wang, Q., Mann, D., Lundstrom, M., Dai, H.: High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92(10), 106804 (2004)
[4]
Appenzeller, J., Lin, Y., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett 93(19), 196805 (2004)
[5]
Morita, T., Singh, V., Oku, S., Nagamatsu, S., Takashima, W., Hayase, S., Kaneto, K.: Ambipolar transport in bilayer organic field-effect transistor based on poly(3-hexylthiophene) and fullerene derivatives. Jpn. J. Appl. Phys. 49, 041601 (2010)
[6]
Appenzeller, J., Knoch, J., Derycke, V., Martel, R., Wind, S., Avouris, P.: Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89(12), 126801 (2002)
[7]
Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Ballistic carbon nanotube field-effect transistors. Nature 424(6949), 654---657 (2003)
[8]
Appenzeller, J., Knoch, J., Radosavljevic, M., Avouris, P.: Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. Phys. Rev. Lett 92(22), 226802 (2004)
[9]
Radosavljevic, M., Heinze, S., Tersoff, J., Avouris, P.: Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83(12), 2435 (2003)
[10]
Javey, A., Guo, J., Farmer, D., Wang, Q., Yenilmez, E., Gordon, R., Lundstrom, M., Dai, H.: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4(7), 1319---1322 (2004)
[11]
Chen, J., Clinke, C., Afzali, A., Avouris, P.: Air-stable chemical doping of carbon nanotube transistors. In: Proceeding on Device Research Conference, pp. 137---138 (2004)
[12]
Javey, A., Tu, R., Farmer, D.B., Guo, J., Gordon, R.G., Dai, H.: High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5(2), 345---348 (2005)
[13]
Raychowdhury, A., Keshavarzi, A., Kurtin, J., De, V., Roy, K.: Carbon nanotube field-effect transistors for high-performance digital circuits--DC analysis and modeling toward optimum transistor structure. IEEE Trans. Electron Devices. 53(11), 2711---2717 (2006)
[14]
Bhargava, K., Singh, V.: Electrical characterization and parameter extraction of organic thin film transistors using two dimensional numerical simulations. J. Comput. Electron. 13, 585---592 (2014)
[15]
Radosavljevic, M., Heinze, S., Tersoff, J., Avouris, P.: Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83, 2435 (2003)
[16]
Kordrostami, Z., Sheikhi, M.H.: Fundamental Physical Aspects of Carbon Nanotube Transistors. INTECH Open Access Publisher, Rijeka, Croatia (2010)
[17]
Wang, W., Yang, X., Li, N., Xiao, G., Jiang, S., Xia, C., Wang, Y.: Transport study of gate and channel engineering on the surrounding-gate CNTFETs based on NEGF quantum theory. J. Comput. Electron. 13, 192---197 (2014)
[18]
Kordrostami, Z., Hassaninia, I., Sheikhi, M.H. : Unipolar Schottky-Ohmic carbon nanotube field effect transistor. In: 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2008. IEEE (2008)
[19]
Guo, J., Datta, S., Lundstrom, M.: A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans. Electron Dev. 51, 172---177 (2004)
[20]
Subhajit, D., Debaprasad, D., Rahaman, H.: Design of 9-transistor content addressable memory cells using Schottky-barrier carbon nanotube field effect transistors. In: IEEE 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), pp. 23---25. Durgapur, India (2016)
[21]
Geetha, P., WahidaBanu, R.S.D.: A compact modelling of double-walled gate wrap around carbon nanotube array field effect transistors. J. Comput. Electron. 13, 900---916 (2014)
[22]
Guo, J., Lundstrom, M.: Device Simulation of SWNT-FETs. Carbon Nanotube Electronics. Springer, New York (2009)
[23]
Appenzeller, J., Lin, Y.M., Knoch, J., Chen, Z., Avouris, P.: Comparing carbon nanotube transistors--the ideal choice: a novel tunneling device design. IEEE Trans. Electron Dev. 52(12), 2568---2576 (2005)
[24]
Colinge, J.P.: Silicon-on-Insulator Technology: Materials to VLSI. Kluwer Academic, Norwell, MA (1991)
[25]
Knoch, J., Zhang, M., Mantl, S., Appenzeller, J.: On the performance of single-gated ultrathin-body SOI Schottky-barrier MOSFETs. IEEE Trans. Electron Dev. 53(7), 1669---1674 (2006)
[26]
Diabi, A., Hocini, A.: Compact modeling of the performance of SB-CNTFET as a function of geometrical and physical parameters. Acta Phys. Pol. A 127(4), 1124---1127 (2015)
[27]
Najari, M., Frégonèse, S., Maneux, C., Mnif, H., Masmoudi, N., Zimmer, T.: Schottky barrier carbon nanotube transistor: compact modeling, scaling study, and circuit design applications. IEEE Trans. Electron Dev. 58(1), 195---205 (2011)
[28]
Hasan, S., Salahuddin, S., Vaidyanathan, M., Alam, M.A.: High-frequency performance projections for ballistic carbon-nanotube transistors. IEEE Trans. Nanotechnol. Nanotechnol. 5(1), 14---22 (2006)
[29]
Ferry, D., Stephen, K., Goodnick, M., Bird, J.: Transport in Nanostructures. Cambridge University Press, Cambridge (2009)
[30]
Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)
[31]
Sze, S.: Physics of Semiconductor Devices. Wiley, Hoboken (2007)
[32]
Shirazi, S.G., Mirzakuchki, S.: Dependence of carbon nanotube field effect transistors performance on doping level of channel at different diameters: on/off current ratio. Appl. Phys. Lett. 99(26), 263104---263104 (2011)
[33]
Maneux, C., Fregonese, S., Zimmer, T., Retailleau, S., Nguyen, H.N., Querlioz, D., Bournel, A., Dollfus, P., Triozon, F., Niquet, Y.M., Roche, S.: Schottky barrier carbon nanotube transistor: compact modeling, scaling study, and circuit design applications. Solid-State Electron. 89, 26---67 (2013)
[34]
Yu, W.J., Kim, U.J., Kang, B.R., Lee, I.H., Lee, E., Lee, Y.H.: Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors. Nano Lett. 9, 1401---1405 (2009)
  1. Modeling and performance analysis of Schottky barrier carbon nanotube field effect transistor SB-CNTFET

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Computational Electronics
    Journal of Computational Electronics  Volume 16, Issue 3
    September 2017
    508 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 September 2017

    Author Tags

    1. Carbon nanotube
    2. Compact modeling
    3. SB-CNTFET
    4. Transistor

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media