Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Compressed Domain Video Abstraction Based on I-Frame of HEVC Coded Videos

Published: 01 April 2019 Publication History

Abstract

Video abstraction allows indexing, searching, browsing and evaluating a video only by accessing its useful contents. Several studies have been done in this field, but most of them are in pixel domain and require decoding process. It makes these methods more time and process consuming than compressed domain video abstraction. In this paper, we present a new video abstraction method in H.265/HEVC compressed domain, HVAIF. The method is based on the normalized histogram of extracted I-frame prediction modes from an H.265/HEVC coded video. The frames' similarity is calculated by intersecting their I-frame prediction modes' histogram. The similarity measure detects and removes redundant key-frames to increase the quality of final video abstraction. Moreover, we employ fuzzy c-means clustering to categorize similar frames and extract key-frames as representatives of the entire video frames. The interpretation of the results shows that using the proposed method achieves on average 86% accuracy and 19% error rate in compressed domain video abstraction which is higher than the other tested methods in the pixel domain. Also, it has an acceptable robustness to coding parameters, and on average it generates video key-frames that are closer to human summaries.

References

[1]
J. Almeida, N.J. Leite, R.D.S. Torres, Online video summarization on compressed domain. J. Vis. Commun. Image Represent. 24(6), 729---738 (2013).
[2]
S.E.D. Avila, A.P.B. Lopes, A. Da Luz, A.D.A. Araújo, VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recognit. Lett. 32(1), 56---68 (2011).
[3]
S. Cha, Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Models Methods Appl. Sci. 1(4), 300---307 (2007).
[4]
T. Chheng, Video Summarization Using Clustering (Department of Computer Science University of California, Irvine, 2007)
[5]
S. De Bruyne, D. Van Deursen, J. De Cock, W. De Neve, P. Lambert, R. Van de Walle, A compressed-domain approach for shot boundary detection on H.264/AVC bit streams. Signal Process. Image Commun. 23(7), 473---489 (2008).
[6]
D. DeMenthon, V. Kobla, D. Doermann, Video summarization by curve simplification. In: Proceedings of the ACM International Conference on Multimedia, New York, USA (1998), pp. 211---218.
[7]
R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley, New York, 2001)
[8]
N. Ejaz, T.B. Tariq, S.W. Baik, Adaptive key frame extraction for video summarization using an aggregation mechanism. J. Vis. Commun. Image Represent. 23(7), 1031---1040 (2012).
[9]
M. Furini, F. Geraci, M. Montangero, M. Pellegrini, STIMO: STIll and MOving video storyboard for the web scenario. Multimed. Tools Appl. 46(1), 47---69 (2010).
[10]
H.265/HEVC Reference Software, https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/. Last seen on Feb 2017
[11]
A. Hanjalic, H. Zhang, An Integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis. IEEE Trans. Circuits Syst. 9(8), 1280---1289 (1999).
[12]
J. He, F. Yang, Y. Zhou, High-speed implementation of rate-distortion optimised quantisation for H.265/HEVC. IET Image Process. 9(8), 652---661 (2015).
[13]
L. Herranz, J.M. Martínez, An efficient summarization algorithm based on clustering and bitstream extraction. In: Proceedings of International Conference on Multimedia and Expo (2009), pp. 654---657.
[14]
W. Hu, S. Member, N. Xie, L. Li, X. Zeng, S. Maybank, A survey on visual content-based video indexing and retrieval. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(6), 797---819 (2011).
[15]
J. Kavitha, P.A.J. Rani, Static and multiresolution feature extraction for video summarization. Procedia Comput. Sci. 47(C), 292---300 (2015).
[16]
J. Li, T. Yao, Q. Ling, T. Mei, Detecting shot boundary with sparse coding for video summarization. Neurocomputing 266, 66---78 (2017).
[17]
Y. Li, T. Zhang, D. Tretter, An overview of video abstraction techniques an overview of video abstraction techniques. Imaging, 1---23 (2001). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.6173&rep=rep1&type=pdf
[18]
T. Liu, X. Zhang, J. Feng, K.T. Lo, Shot reconstruction degree: a novel criterion for key frame selection. Pattern Recognit. Lett. 25(12), 1451---1457 (2004).
[19]
A.G. Money, H. Agius, Video summarization: a conceptual framework and survey of the state of the art. J. Vis. Commun. Image Represent. 19(2), 121---143 (2008).
[20]
P. Mundur, Y. Rao, Y. Yesha, Key-frame based video summarization using Delaunay clustering. Int. J. Digit. Libr. 6(2), 219---232 (2006).
[21]
J.H. Oh, Q. Wen, S. Hwang, J. Lee, Video abstraction. In: Video Data Management and Information Retrieval (2005), pp. 321---346
[22]
F. Rahmani, F. Zargari, Compressed domain visual information retrieval based on I-frames in HEVC. Multimed. Tools Appl. (2016).
[23]
G.-H. Song, Q.G. Ji, Z.-M. Lu, Z.D. Fang, Z.H. Xie, A novel video abstraction method based on fast clustering of the regions of interest in keyframes. Int. J. Electron. Commun. (AEÜ) 68, 237---243 (2014).
[24]
X. Song, G. Fan, Joint key-frame extraction and object segmentation for content-based video analysis. IEEE Trans. Circuits Syst. Video Technol. 16(7), 904---914 (2006).
[25]
M. Srinivas, M.M.M. Pai, R.M. Pai, An improved algorithm for video summarization--a rank based approach. Procedia Comput. Sci. 89, 812---819 (2016).
[26]
G.J. Sullivan, J. Ohm, W. Han, T. Wiegand, Overview of the high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649---1668 (2012).
[27]
Z. Sun, K. Jia, H. Chen, Video keyframe extraction based on spatial-temporal color distribution. In: Proceedings--4th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP (2008), pp. 196---199.
[28]
B.T. Truong, S. Venkatesh, Video abstraction: a systematic review and classification. ACM Trans. Multimed. Comput. Commun. Appl. 3(1), 1---37 (2007).
[29]
J. Wu, S. Zhong, J. Jiang, Y. Yang, A novel clustering method for static video summarization. Multimed. Tools Appl. 76(7), 9625---9641 (2017).
[30]
L. Xiang-wei, Z. Li-dong, Z. Kai, Hierarchical video summarization extraction algorithm in compressed domain. Phys. Procedia 24, 2360---2366 (2012).
[31]
W. Yao, Z. Li, S. Rahardja, Dynamic threshold-based keyframe detection and its application in rate control. IET Image Process. 6(7), 986 (2012).
[32]
X.D. Zhang, T.Y. Liu, K.T. Lo, J. Feng, Dynamic selection and effective compression of keyframes for video abstraction. Pattern Recognit. Lett. 24(9---10), 1523---1532 (2003).

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Circuits, Systems, and Signal Processing
Circuits, Systems, and Signal Processing  Volume 38, Issue 4
April 2019
494 pages

Publisher

Birkhauser Boston Inc.

United States

Publication History

Published: 01 April 2019

Author Tags

  1. Clustering
  2. Compressed domain feature vector
  3. Compressed video
  4. Key-frame extraction
  5. Prediction modes' histogram
  6. Video abstraction

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media