Abstract
Video abstraction allows indexing, searching, browsing and evaluating a video only by accessing its useful contents. Several studies have been done in this field, but most of them are in pixel domain and require decoding process. It makes these methods more time and process consuming than compressed domain video abstraction. In this paper, we present a new video abstraction method in H.265/HEVC compressed domain, HVAIF. The method is based on the normalized histogram of extracted I-frame prediction modes from an H.265/HEVC coded video. The frames’ similarity is calculated by intersecting their I-frame prediction modes’ histogram. The similarity measure detects and removes redundant key-frames to increase the quality of final video abstraction. Moreover, we employ fuzzy c-means clustering to categorize similar frames and extract key-frames as representatives of the entire video frames. The interpretation of the results shows that using the proposed method achieves on average 86% accuracy and 19% error rate in compressed domain video abstraction which is higher than the other tested methods in the pixel domain. Also, it has an acceptable robustness to coding parameters, and on average it generates video key-frames that are closer to human summaries.
Similar content being viewed by others
References
J. Almeida, N.J. Leite, R.D.S. Torres, Online video summarization on compressed domain. J. Vis. Commun. Image Represent. 24(6), 729–738 (2013). https://doi.org/10.1016/j.jvcir.2012.01.009
S.E.D. Avila, A.P.B. Lopes, A. Da Luz, A.D.A. Araújo, VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recognit. Lett. 32(1), 56–68 (2011). https://doi.org/10.1016/j.patrec.2010.08.004
S. Cha, Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Models Methods Appl. Sci. 1(4), 300–307 (2007). https://doi.org/10.1007/s00167-009-0884-z
T. Chheng, Video Summarization Using Clustering (Department of Computer Science University of California, Irvine, 2007)
S. De Bruyne, D. Van Deursen, J. De Cock, W. De Neve, P. Lambert, R. Van de Walle, A compressed-domain approach for shot boundary detection on H.264/AVC bit streams. Signal Process. Image Commun. 23(7), 473–489 (2008). https://doi.org/10.1016/j.image.2008.04.012
D. DeMenthon, V. Kobla, D. Doermann, Video summarization by curve simplification. In: Proceedings of the ACM International Conference on Multimedia, New York, USA (1998), pp. 211–218. https://doi.org/10.1145/290747.290773
R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley, New York, 2001)
N. Ejaz, T.B. Tariq, S.W. Baik, Adaptive key frame extraction for video summarization using an aggregation mechanism. J. Vis. Commun. Image Represent. 23(7), 1031–1040 (2012). https://doi.org/10.1016/j.jvcir.2012.06.013
M. Furini, F. Geraci, M. Montangero, M. Pellegrini, STIMO: STIll and MOving video storyboard for the web scenario. Multimed. Tools Appl. 46(1), 47–69 (2010). https://doi.org/10.1007/s11042-009-0307-7
H.265/HEVC Reference Software, https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/. Last seen on Feb 2017
A. Hanjalic, H. Zhang, An Integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis. IEEE Trans. Circuits Syst. 9(8), 1280–1289 (1999). https://doi.org/10.1109/76.809162
J. He, F. Yang, Y. Zhou, High-speed implementation of rate-distortion optimised quantisation for H.265/HEVC. IET Image Process. 9(8), 652–661 (2015). https://doi.org/10.1049/iet-ipr.2014.0849
L. Herranz, J.M. Martínez, An efficient summarization algorithm based on clustering and bitstream extraction. In: Proceedings of International Conference on Multimedia and Expo (2009), pp. 654–657. https://doi.org/10.1109/icme.2009.5202581
W. Hu, S. Member, N. Xie, L. Li, X. Zeng, S. Maybank, A survey on visual content-based video indexing and retrieval. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(6), 797–819 (2011). https://doi.org/10.1109/TSMCC.2011.2109710
J. Kavitha, P.A.J. Rani, Static and multiresolution feature extraction for video summarization. Procedia Comput. Sci. 47(C), 292–300 (2015). https://doi.org/10.1016/j.procs.2015.03.209
J. Li, T. Yao, Q. Ling, T. Mei, Detecting shot boundary with sparse coding for video summarization. Neurocomputing 266, 66–78 (2017). https://doi.org/10.1016/j.neucom.2017.04.065
Y. Li, T. Zhang, D. Tretter, An overview of video abstraction techniques an overview of video abstraction techniques. Imaging, 1–23 (2001). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.6173&rep=rep1&type=pdf
T. Liu, X. Zhang, J. Feng, K.T. Lo, Shot reconstruction degree: a novel criterion for key frame selection. Pattern Recognit. Lett. 25(12), 1451–1457 (2004). https://doi.org/10.1016/j.patrec.2004.05.020
A.G. Money, H. Agius, Video summarization: a conceptual framework and survey of the state of the art. J. Vis. Commun. Image Represent. 19(2), 121–143 (2008). https://doi.org/10.1016/j.jvcir.2007.04.002
P. Mundur, Y. Rao, Y. Yesha, Key-frame based video summarization using Delaunay clustering. Int. J. Digit. Libr. 6(2), 219–232 (2006). https://doi.org/10.1007/s00799-005-0129-9
J.H. Oh, Q. Wen, S. Hwang, J. Lee, Video abstraction. In: Video Data Management and Information Retrieval (2005), pp. 321–346
F. Rahmani, F. Zargari, Compressed domain visual information retrieval based on I-frames in HEVC. Multimed. Tools Appl. (2016). https://doi.org/10.1007/s11042-016-3391-5
G.-H. Song, Q.G. Ji, Z.-M. Lu, Z.D. Fang, Z.H. Xie, A novel video abstraction method based on fast clustering of the regions of interest in keyframes. Int. J. Electron. Commun. (AEÜ) 68, 237–243 (2014). https://doi.org/10.1016/j.aeue.2014.03.004
X. Song, G. Fan, Joint key-frame extraction and object segmentation for content-based video analysis. IEEE Trans. Circuits Syst. Video Technol. 16(7), 904–914 (2006). https://doi.org/10.1109/TCSVT.2006.877419
M. Srinivas, M.M.M. Pai, R.M. Pai, An improved algorithm for video summarization—a rank based approach. Procedia Comput. Sci. 89, 812–819 (2016). https://doi.org/10.1016/j.procs.2016.06.065
G.J. Sullivan, J. Ohm, W. Han, T. Wiegand, Overview of the high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012). https://doi.org/10.1109/TCSVT.2012.2221191
Z. Sun, K. Jia, H. Chen, Video keyframe extraction based on spatial-temporal color distribution. In: Proceedings—4th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP (2008), pp. 196–199. https://doi.org/10.1109/iih-msp.2008.245
B.T. Truong, S. Venkatesh, Video abstraction: a systematic review and classification. ACM Trans. Multimed. Comput. Commun. Appl. 3(1), 1–37 (2007). https://doi.org/10.1145/1198302.1198305
J. Wu, S. Zhong, J. Jiang, Y. Yang, A novel clustering method for static video summarization. Multimed. Tools Appl. 76(7), 9625–9641 (2017). https://doi.org/10.1007/s11042-016-3569-x
L. Xiang-wei, Z. Li-dong, Z. Kai, Hierarchical video summarization extraction algorithm in compressed domain. Phys. Procedia 24, 2360–2366 (2012). https://doi.org/10.1016/j.phpro.2012.02.350
W. Yao, Z. Li, S. Rahardja, Dynamic threshold-based keyframe detection and its application in rate control. IET Image Process. 6(7), 986 (2012). https://doi.org/10.1049/iet-ipr.2011.0189
X.D. Zhang, T.Y. Liu, K.T. Lo, J. Feng, Dynamic selection and effective compression of keyframes for video abstraction. Pattern Recognit. Lett. 24(9–10), 1523–1532 (2003). https://doi.org/10.1016/S0167-8655(02)00391-4
Author information
Authors and Affiliations
Corresponding author
Additional information
Research Institute for ICT is formerly known as Iran Telecom Research Center (ITRC).
Rights and permissions
About this article
Cite this article
Yamghani, A.R., Zargari, F. Compressed Domain Video Abstraction Based on I-Frame of HEVC Coded Videos. Circuits Syst Signal Process 38, 1695–1716 (2019). https://doi.org/10.1007/s00034-018-0932-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-018-0932-3