Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/3135595.3135617acmotherconferencesArticle/Chapter ViewAbstractPublication PagescccConference Proceedingsconference-collections
research-article

Complexity-theoretic foundations of quantum supremacy experiments

Published: 09 July 2017 Publication History

Abstract

In the near future, there will likely be special-purpose quantum computers with 40--50 high-quality qubits. This paper lays general theoretical foundations for how to use such devices to demonstrate "quantum supremacy": that is, a clear quantum speedup for some task, motivated by the goal of overturning the Extended Church-Turing Thesis as confidently as possible.
First, we study the hardness of sampling the output distribution of a random quantum circuit, along the lines of a recent proposal by the Quantum AI group at Google. We show that there's a natural average-case hardness assumption, which has nothing to do with sampling, yet implies that no polynomial-time classical algorithm can pass a statistical test that the quantum sampling procedure's outputs do pass. Compared to previous work -- for example, on BosonSampling and IQP -- the central advantage is that we can now talk directly about the observed outputs, rather than about the distribution being sampled.
Second, in an attempt to refute our hardness assumption, we give a new algorithm, inspired by Savitch's Theorem, for simulating a general quantum circuit with n qubits and depth d in polynomial space and dO(n) time. We then discuss why this and other known algorithms fail to refute our assumption.
Third, resolving an open problem of Aaronson and Arkhipov, we show that any strong quantum supremacy theorem -- of the form "if approximate quantum sampling is classically easy, then the polynomial hierarchy collapses"-- must be non-relativizing. This sharply contrasts with the situation for exact sampling.
Fourth, refuting a conjecture by Aaronson and Ambainis, we show that there is a sampling task, namely Fourier Sampling, with a 1 versus linear separation between its quantum and classical query complexities.
Fifth, in search of a "happy medium" between black-box and non-black-box arguments, we study quantum supremacy relative to oracles in P/poly. Previous work implies that, if one-way functions exist, then quantum supremacy is possible relative to such oracles. We show, conversely, that some computational assumption is needed: if SampBPP = SampBQP and NPBPP, then quantum supremacy is impossible relative to oracles with small circuits.

References

[1]
S. Aaronson. BQP and the polynomial hierarchy. In Proc. ACM STOC, 2010. arXiv:0910.4698.
[2]
S. Aaronson. Google, D-wave, and the case of the factor-10^8 speedup for WHAT?, 2015. URL: http://www.scottaaronson.com/blog/?p=2555.
[3]
S. Aaronson and A. Arkhipov. The computational complexity of linear optics. Theory of Computing, 9(4):143--252, 2013. Earlier version in Proc. ACM STOC'2011. ECCC TR10--170, arXiv:1011.3245.
[4]
S. Aaronson et al. The Complexity Zoo. URL: http://www.complexityzoo.com.
[5]
S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinctness problems. J. of the ACM, 51(4):595--605, 2004.
[6]
S. Aaronson and A. Wigderson. Algebrization: a new barrier in complexity theory. ACM Trans. on Computation Theory, 1(1), 2009. Earlier version in Proc. ACM STOC'2008.
[7]
Sccot Aaronson. New evidence that quantum mechanics is hard to simulate on classical computers. http://www.scottaaronson.com/talks/newev.ppt, 2009.
[8]
Scott Aaronson. The equivalence of sampling and searching. Theory of Computing Systems, 55(2):281--298, 2014.
[9]
Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates quantum from classical computing. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages 307--316. ACM, 2015.
[10]
Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity using cheat sheets. arXiv preprint arXiv:1511.01937, 2015.
[11]
Scott Aaronson, Adam Bouland, Greg Kuperberg, and Saeed Mehraban. The computational complexity of ball permutations. arXiv preprint arXiv:1610.06646, 2016.
[12]
D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. In Proc. ACM STOC, pages 176--188, 1997. quant-ph/9906129.
[13]
D. Aharonov, M. Ben-Or, and E. Eban. Interactive proofs for quantum computations. arXiv:0810.5375, 2008.
[14]
Andris Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision and element distinctness with small range. Theory of Computing, 1(1):37--46, 2005.
[15]
Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.
[16]
Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P=?NP question. SIAM Journal on computing, 4(4):431--442, 1975.
[17]
C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum computing. SIAM J. Comput., 26(5):1510--1523, 1997. quant-ph/9701001.
[18]
E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26(5):1411--1473, 1997. Earlier version in Proc. ACM STOC'1993.
[19]
Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, John M Martinis, and Hartmut Neven. Characterizing quantum supremacy in near-term devices. arXiv preprint arXiv:1608.00263, 2016.
[20]
Dan Boneh and Richard J. Lipton. Quantum cryptanalysis of hidden linear functions. In Annual International Cryptology Conference, pages 424--437. Springer, 1995.
[21]
Fernando G. S. L. BrandÃo, Aram W. Harrow, and Michał Horodecki. Local random quantum circuits are approximate polynomial-designs. Communications in Mathematical Physics, 346(2):397--434, 2016.
[22]
Sergey Bravyi and David Gosset. Improved classical simulation of quantum circuits dominated by clifford gates. arXiv preprint arXiv:1601.07601, 2016.
[23]
M. Bremner, R. Jozsa, and D. Shepherd. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. Roy. Soc. London, A467(2126):459--472, 2010. arXiv:1005.1407.
[24]
Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Average-case complexity versus approximate simulation of commuting quantum computations. arXiv preprint arXiv:1504.07999, 2015.
[25]
Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Achieving quantum supremacy with sparse and noisy commuting quantum computations. arXiv preprint arXiv:1610.01808, 2016.
[26]
A. Broadbent, J. Fitzsimons, and E. Kashefi. Universal blind quantum computation. In Proc. IEEE FOCS, 2009. arXiv:0807.4154.
[27]
Jacques Carolan, Christopher Harrold, Chris Sparrow, Enrique Martín-López, Nicholas J Russell, Joshua W Silverstone, Peter J Shadbolt, Nobuyuki Matsuda, Manabu Oguma, Mikitaka Itoh, Graham D Marshall, Mark G Thompson, Jonathan C F Matthews, Toshikazu Hashimoto, Jeremy L O'Brien, and Anthony Laing. Universal linear optics. Science, 349(6249):711--716, 2015.
[28]
Lijie Chen. A note on oracle separations for BQP. arXiv preprint arXiv:1605.00619, 2016.
[29]
Edward Farhi and Aram W. Harrow. Quantum supremacy through the quantum approximate optimization algorithm. arXiv preprint arXiv:1602.07674, 2016.
[30]
L. Fortnow and J. Rogers. Complexity limitations on quantum computation. J. Comput. Sys. Sci., 59(2):240--252, 1999. cs.CC/9811023.
[31]
Keisuke Fujii. Noise threshold of quantum supremacy. arXiv preprint arXiv:1610.03632, 2016.
[32]
O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. of the ACM, 33(4):792--807, 1986. Earlier version in Proc. IEEE FOCS'1984, pp. 464--479.
[33]
Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 25--32. ACM, 1989.
[34]
J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM J. Comput., 28(4):1364--1396, 1999.
[35]
Johan Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages 6--20. ACM, 1986.
[36]
R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: derandomizing the XOR Lemma. In Proc. ACM STOC, pages 220--229, 1997.
[37]
Richard Jozsa and Marrten Van den Nest. Classical simulation complexity of extended clifford circuits. Quantum Information & Computation, 14(7&8):633--648, 2014.
[38]
Gil Kalai. How quantum computers fail: quantum codes, correlations in physical systems, and noise accumulation. arXiv preprint arXiv:1106.0485, 2011.
[39]
J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature, 519(7541):66--69, 2015.
[40]
Samuel Kutin. Quantum lower bound for the collision problem with small range. Theory of Computing, 1(1):29--36, 2005.
[41]
Leonid A. Levin. The tale of one-way functions. Problems of Information Transmission, 39(1):92--103, 2003.
[42]
Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal on Computing, 17(2):373--386, 1988.
[43]
Igor L. Markov and Yaoyun Shi. Simulating quantum computation by contracting tensor networks. SIAM Journal on Computing, 38(3):963--981, 2008.
[44]
Tomoyuki Morimae, Keisuke Fujii, and Joseph F Fitzsimons. Hardness of classically simulating the one-clean-qubit model. Physical review letters, 112(13):130502, 2014.
[45]
Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System Sciences, 49(2):149--167, 1994.
[46]
Borja Peropadre, Gian Giacomo Guerreschi, Joonsuk Huh, and Alán Aspuru-Guzik. Microwave boson sampling. arXiv preprint arXiv:1510.08064, 2015.
[47]
John Preskill. Quantum computing and the entanglement frontier. arXiv preprint arXiv:1203.5813, 2012.
[48]
A. A. Razborov and S. Rudich. Natural proofs. J. Comput. Sys. Sci., 55(1):24--35, 1997. Earlier version in Proc. ACM STOC'1994, pp. 204--213.
[49]
Benjamin Rossman, Rocco A Servedio, and Li-Yang Tan. An average-case depth hierarchy theorem for boolean circuits. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 1030--1048. IEEE, 2015.
[50]
Terry Rudolph. Why I am optimistic about the silicon-photonic route to quantum computing. arXiv preprint arXiv:1607.08535, 2016.
[51]
Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge. Journal of the ACM (JACM), 50(2):196--249, 2003.
[52]
W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities. J. Comput. Sys. Sci., 4(2):177--192, 1970.
[53]
Rocco A Servedio and Steven J Gortler. Equivalences and separations between quantum and classical learnability. SIAM Journal on Computing, 33(5):1067--1092, 2004.
[54]
A. Shamir. IP=PSPACE. J. of the ACM, 39(4):869--877, 1992. Earlier version in Proc. IEEE FOCS'1990, pp. 11--15.
[55]
P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484--1509, 1997. Earlier version in Proc. IEEE FOCS'1994. quant-ph/9508027.
[56]
Joel Spencer. Asymptopia, volume 71. American Mathematical Soc., 2014.
[57]
B. M. Terhal and D. P. DiVincenzo. Adaptive quantum computation, constant-depth circuits and Arthur-Merlin games. Quantum Information and Computation, 4(2):134--145, 2004. quant-ph/0205133.
[58]
S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865--877, 1991. Earlier version in Proc. IEEE FOCS'1989, pp. 514--519.
[59]
Vladimir Naumovich Vapnik. Statistical learning theory, volume 1. Wiley New York, 1998.
[60]
Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), 1985.
[61]
Mark Zhandry. How to construct quantum random functions. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 679--687. IEEE, 2012.
[62]
Mark Zhandry. A note on quantum-secure prps. arXiv preprint arXiv:1611.05564, 2016.

Cited By

View all
  • (2024)Increasing the Measured Effective Quantum Volume with Zero Noise ExtrapolationACM Transactions on Quantum Computing10.1145/36802905:3(1-18)Online publication date: 19-Sep-2024
  • (2024)The Significance of the Quantum Volume for Other Algorithms: A Case Study for Quantum Amplitude EstimationComputational Science – ICCS 202410.1007/978-3-031-63778-0_16(221-234)Online publication date: 2-Jul-2024
  • (2023)Energy Efficiency of Quantum Statevector Simulation at ScaleProceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis10.1145/3624062.3624270(1871-1875)Online publication date: 12-Nov-2023
  • Show More Cited By

Index Terms

  1. Complexity-theoretic foundations of quantum supremacy experiments

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      CCC '17: Proceedings of the 32nd Computational Complexity Conference
      July 2017
      942 pages
      ISBN:9783959770408

      In-Cooperation

      Publisher

      Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

      Dagstuhl, Germany

      Publication History

      Published: 09 July 2017

      Check for updates

      Author Tags

      1. computational complexity
      2. quantum computing
      3. quantum supremacy

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 12 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Increasing the Measured Effective Quantum Volume with Zero Noise ExtrapolationACM Transactions on Quantum Computing10.1145/36802905:3(1-18)Online publication date: 19-Sep-2024
      • (2024)The Significance of the Quantum Volume for Other Algorithms: A Case Study for Quantum Amplitude EstimationComputational Science – ICCS 202410.1007/978-3-031-63778-0_16(221-234)Online publication date: 2-Jul-2024
      • (2023)Energy Efficiency of Quantum Statevector Simulation at ScaleProceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis10.1145/3624062.3624270(1871-1875)Online publication date: 12-Nov-2023
      • (2023)On the Need for Large Quantum DepthJournal of the ACM10.1145/357063770:1(1-38)Online publication date: 16-Jan-2023
      • (2023)A Polynomial-Time Classical Algorithm for Noisy Random Circuit SamplingProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585234(945-957)Online publication date: 2-Jun-2023
      • (2022)Advances in the quantum internetCommunications of the ACM10.1145/352445565:8(52-63)Online publication date: 21-Jul-2022
      • (2021)A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum DeviceJournal of the ACM10.1145/344130968:5(1-47)Online publication date: 12-Aug-2021
      • (2021)Designing calibration and expressivity-efficient instruction sets for quantum computingProceedings of the 48th Annual International Symposium on Computer Architecture10.1109/ISCA52012.2021.00071(846-859)Online publication date: 14-Jun-2021
      • (2020)On the need for large Quantum depthProceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3357713.3384291(902-915)Online publication date: 22-Jun-2020
      • (2019)State stabilization for gate-model quantum computersQuantum Information Processing10.1007/s11128-019-2397-018:9(1-22)Online publication date: 1-Sep-2019
      • Show More Cited By

      View Options

      Get Access

      Login options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media