Nothing Special   »   [go: up one dir, main page]

skip to main content
article

One Pebble Versus ϵ · log n Bits

Published: 01 January 2010 Publication History

Abstract

We show that, for any ϵ > 0, there exists a language accepted in strong ϵ log n space by a 2-way deterministic Turing machine working with a single binary worktape, that cannot be accepted in sublogarithmic weak space by any pebble machine (i.e., a 2-way nondeterministic Turing machine with one pebble that can be moved onto the input cells). Moreover, we provide optimal unary lower bounds on the product of space and input head reversals for strong and weak pebble machines accepting nonregular languages.

References

[1]
Alberts, M.: Space complexity of alternating Turing machines, Proc. Int. Conf. Fundamentals of Computation Theory (L. Budach, Ed.), LNCS 199, Springer-Verlag, Berlin 1985, 1-7.
[2]
Alt, H., Mehlhorn, K.: A language over a one symbol alphabet requiring only O(log log n) space, SIGACT news, 7, 1975, 31-33.
[3]
Bertoni, A., Mereghetti, C., Pighizzini, G.: An optimal lower bound for nonregular languages, Information Processing Letters, 50, 1994, 289-292. (Corrigendum: ibid., 52, 1994, 339).
[4]
Bertoni, A., Mereghetti, C., Pighizzini, G.: Strong optimal lower bounds for Turing machines that accept nonregular languages, Proc. 20th Int. Symp. Mathematical Foundations of Computer Science (J. Wiedermann, P. Hájek, Eds.), LNCS 969, Springer-Verlag, Berlin 1995, 309-318.
[5]
Chang, J., Ibarra, O., Palis, M., Ravikumar, B.: On pebble automata, Theoretical Computer Science, 44, 1986, 111-121.
[6]
Freedman, A., Ladner, R.: Space bounds for processing contentless inputs, Journal of Computer and System Sciences, 11, 1975, 118-128.
[7]
Geffert, V.: Nondeterministic computations in sublogarithmic space and space constructibility, SIAM Journal on Computing, 20, 1991, 484-498.
[8]
Geffert, V.: Tally version of the Savitch and Immerman-Szelepcsényi theorems for sublogarithmic space, SIAM Journal on Computing, 22, 1993, 102-113.
[9]
Geffert, V.: A Variant of inductive counting, Theoretical Computer Science, 237, 2000, 465-475.
[10]
Geffert, V., Mereghetti, C., Pighizzini, G.: Sublogarithmic bounds on space and reversals, SIAM Journal on Computing, 28, 1999, 325-340.
[11]
Geffert, V., Pardubská, D.: Factoring and testing primes in small space, Proc. 35th SOFSEM -- Theory and Practice of Computer Science (M. Nielsen, A. Ku¿era, P. Bro Miltersen, C. Palamidessi, P. T¿ma, F. Valencia, Eds.), LNCS 5404, Springer-Verlag, Berlin 2009, 291-302.
[12]
Hennie, F.: One-tape, off-line Turing machine computations, Information and Control, 8, 1965, 553-578.
[13]
Hopcroft, J., Ullman, J.: Some results on tape-bounded Turing machines, Journal of the ACM, 16, 1969, 168-177.
[14]
Hopcroft, J., Ullman, J.: Introduction to automata theory, languages, and computation, Addison-Wesley, Reading MA, 1979.
[15]
Hromkovi¿, J., Rovan, B., Slobodová, A.: Deterministic versus nondeterministic space in terms of synchronized alternating machines, Theoretical Computer Science, 132, 1994, 319-336.
[16]
Inoue, A., Ito, A., Inoue, K., Okazaki, T.: Some properties of one-pebble Turing machines with sublogarithmic space, Theoretical Computer Science, 341, 2005, 138-149.
[17]
Iwama, K.: ASPACE(o(log log n)) is regular, SIAM Journal on Computing, 22, 1993, 136-146.
[18]
Lewis, P., Stearns, R., Hartmanis, J.: Memory bounds for the recognition of context free and context sensitive languages, Conf. Record 6th IEEE Symp. Switching Circuit Theory and Logical Design, 1965, 191-202.
[19]
Mereghetti, C.: Testing the descriptional power of small Turing machines on nonregular language acceptance, International Journal of Foundations of Computer Science, 19, 2008, 827-843.
[20]
Savitch, W.: Relationships between nondeterministic and deterministic tape complexities, Journal of Computer and System Sciences, 4, 1970, 177-192.
[21]
Stearns, R., Hartmanis, J., Lewis, P.: Hierarchies of memory limited computations, Conf. Record 6th IEEE Symp. Switching Circuit Theory and Logical Design, 1965, 179-190.
[22]
Sudborough, I.: Efficient algorithms for path system problems and applications to alternating and time-space complexity classes, Proc. 21st IEEE Symp. Foundations of Computer Science, 1980, 62-73.
[23]
Szepietowski, A.: Turing machines with sublogarithmic space, LNCS 843, Springer-Verlag, Berlin, 1994.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Fundamenta Informaticae
Fundamenta Informaticae  Volume 104, Issue 1-2
Non-Classical Models of Automata and Applications
January 2010
182 pages

Publisher

IOS Press

Netherlands

Publication History

Published: 01 January 2010

Author Tags

  1. computational complexity
  2. input head reversals
  3. pebble machines
  4. space bounded computations

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media