Abstract
We state that the minimal space measurement requirements for the recognition of non-regular languages are:
-
1)
in the case of two-way alternating Turing machines O(logloglogn),
-
2)
in the case of two-way nondeterministic Turing machines O(loglogn),
-
3)
in the case of one-way alternating Turing machines O(loglogn).
In the cases 2) and 3) the bound O(loglogn) is tight.
Preview
Unable to display preview. Download preview PDF.
Literature
J.Hartmanis, R.Stearns, P.M.Lewis II. Hierarchies of memory limited computations. IEEE Conf. Record of 6th Ann. Symp. on Switching Circuit Theory and Logical Design (1965) 179–190.
K. Inoue, J. Takanami, H. Taniguchi. A note on alternating on-line Turing machines, Information Processing Letters 15(4) (1982) 164–168.
I.H. Sudborough. Efficient algorithms for path system problems and applications to alternating and time-space complexity classes. Proc. of 21st Ann. Symp. on Foundations of Computation Science (1980) 62–73.
R. Freivalds. On time complexity of deterministic and nondeterministic Turing machines, Latvian Mathematics 23 (1979) 158–165 (Russian).
B. Monien, I.H. Sudborough. Eliminating nondeterminism from Turing machines which use less than logarithm worktape space, Lecture Notes in Computer Science, 72 (1979) 431–455.
A.K. Chandra, D.C. Kozen, L.J. Stockmeyer. Alternation, J. ACM 28(1), (1981) 114–133.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1985 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alberts, M. (1985). Space complexity of alternating Turing machines. In: Budach, L. (eds) Fundamentals of Computation Theory. FCT 1985. Lecture Notes in Computer Science, vol 199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028785
Download citation
DOI: https://doi.org/10.1007/BFb0028785
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-15689-5
Online ISBN: 978-3-540-39636-9
eBook Packages: Springer Book Archive