Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1880429.1880442guidebooksArticle/Chapter ViewAbstractPublication PagesBookacm-pubtype
chapter

On the relation between jumping emerging patterns and rough set theory with application to data classification

January 2010
Pages 236 - 338
Published: 01 January 2010 Publication History

Abstract

Contrast patterns are an essential element of classification methods based on data mining. Among many propositions, jumping emerging patterns (JEPs) have gained significant recognition due to their simplicity and strong discrimination capabilities. This thesis considers JEPs in terms of discovery and classification. The focus is put on their correspondence to the rough set theory. Transformations between transactional data and decision tables allow us to demonstrate relations of JEPs and global/local reducts. As a part of this discussion, we introduce the concept of a jumping emerging pattern with negation (JEPN). Our observations lead to two novel JEP mining methods based on local reducts: global condensation and local projection. Both attempt to decrease dimensionality of subproblems prior to reduct computation. We show that JEP mining can be reduced to the reduct set problem. The latter is addressed with a new approach, called RedApriori, that follows an Apriori candidate generation scheme and employs pruning based on the notion of attribute set dependence. In addition, we discuss different ways of storing pattern collections and propose a CC-Trie, a tree structure that ensures compactness of information and fast pattern lookups.
A classic mining method for highly-supported JEPs employs a structure called a CP-Tree. We show how attribute set dependence can be employed in this approach to extend the pruning capabilities. Moreover, the problem of finding top-k most supported minimal JEPs is proposed. We discuss a solution that gradually raises minimal support while a CPTree is being mined. Small training sets are a challenge in classification. To improve accuracy, we propose AdaAccept, an adaptive classification meta-scheme that analyzes testing instances in turns. It employs an internal classifier with reject option that modifies itself only with accepted instances. Furthermore, we consider a concretization of this scheme in the field of emerging patterns, AdaptiveJEP-Classifier. Two adaptation methods, support adjustment and border recomputation, are put forward. The work has both theoretical and experimental character. The proposed methods and optimizations are evaluated and compared against solutions known in the literature.

References

[1]
Han, J., Kamber, M.: Data mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)
[2]
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487-499. Morgan Kaufmann, San Francisco (1994)
[3]
Suzuki, E.: Autonomous discovery of reliable exception rules. In: KDD, Newport Beach, CA, USA, pp. 259-262. ACM, New York (1997)
[4]
Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: KDD, pp. 80-86. AAAI Press, New York (1998)
[5]
Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) ICDM, pp. 369-376. IEEE Computer Society, Los Alamitos (2001)
[6]
Baralis, E., Chiusano, S.: Essential classification rule sets. ACM Trans. Database Syst. 29, 635-674 (2004)
[7]
Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: KDD, San Diego, CA, United States, pp. 43-52. ACM Press, New York (1999)
[8]
Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by aggregating emerging patterns. In: Arikawa, S., Furukawa, K. (eds.) DS 1999. LNCS (LNAI), vol. 1721, pp. 30-42. Springer, Heidelberg (1999)
[9]
Bailey, J., Manoukian, T., Ramamohanarao, K.: Classification using constrained emerging patterns. In: {153}, pp. 226-237
[10]
Fan, H., Ramamohanarao, K.: Efficiently mining interesting emerging patterns. In: {153}, pp. 189-201
[11]
Li, J., Dong, G., Ramamohanarao, K.: Making use of the most expressive jumping emerging patterns for classification. Knowl. Inf. Syst. 3, 131-145 (2001)
[12]
Li, J., Wong, L.: Emerging patterns and gene expression data. In: Genome Informatics-Workshop, Tokyo, Japan, vol. 12, pp. 3-13. Imperial College Press, London (2001)
[13]
Li, J., Wong, L.: Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics 18, 725-734 (2002)
[14]
Yu, L.T.H., lai Chung, F., Chan, S.C.F., Yuen, S.M.C.: Using emerging pattern based projected clustering and gene expression data for cancer detection. In: Conference on Asia-Pacific bioinformatics, Dunedin, New Zealand, pp. 75-84. Australian Computer Society, Inc. (2004)
[15]
Yoon, H.S., Lee, S.H., Kim, J.H.: Application of emerging patterns for multisource bio-data classification and analysis. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 965-974. Springer, Heidelberg (2005)
[16]
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341-356 (1982)
[17]
Demri, S.P., Orlowska, E.S.: Incomplete Information: Structure, Inference, Complexity. Springer, New York (2002)
[18]
Skowron, A.: Rough sets and vague concepts. Fundam. Inf. 64, 417-431 (2004)
[19]
Polkowski, L.: Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg (2002)
[20]
Skowron, A., Suraj, Z.: Discovery of concurrent data models from experimental tables: A rough set approach. In: KDD, pp. 288-293 (1995)
[21]
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1992)
[22]
Pawlak, Z.: Vagueness and uncertainty: A rough set perspective. Computational Intelligence 11, 232-277 (1995)
[23]
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3-27 (2007)
[24]
Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177, 28-40 (2007)
[25]
Ziarko, W.: Probabilistic rough sets. In: {154}, pp. 283-293
[26]
Yao, Y.: Probabilistic rough set approximations. Int. J. Approx. Reasoning 49, 255-271 (2008)
[27]
Skowron, A., Grzymala-Busse, J.: From rough set theory to evidence theory, pp. 193-236 (1994)
[28]
Lingras, P.: Comparison of neofuzzy and rough neural networks. Information Sciences 110, 207-215 (1998)
[29]
Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.): Data mining, rough sets and granular computing. Physica-Verlag, Heidelberg (2002)
[30]
Yao, Y.: Semantics of fuzzy sets in rough set theory. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 297-318. Springer, Heidelberg (2004)
[31]
Pawlak, Z.: Rough classification. Int. J. Hum.-Comput. Stud. 51, 369-383 (1999)
[32]
Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wroblewski, J.: Rough set algorithms in classification problem, pp. 49-88 (2000)
[33]
Stefanowski, J.: On combined classifiers, rule induction and rough sets. T. Rough Sets 6, 329-350 (2007)
[34]
Wojna, A.: Analogy-based reasoning in classifier construction. PhD thesis, University of Warsaw, Institute of Mathematics, Computer Science and Mechanics (2004)
[35]
Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recogn. Lett. 24, 833-849 (2003)
[36]
Bhatt, R.B., Gopal, M.: On fuzzy-rough sets approach to feature selection. Pattern Recogn. Lett. 26, 965-975 (2005)
[37]
Bazan, J.G., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws from decisions tables. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 346-355. Springer, Heidelberg (1994)
[38]
Hirano, S., Tsumoto, S.: Hierarchical clustering of non-euclidean relational data using indiscernibility-level. In: {155}, pp. 332-339
[39]
Lingras, P., Chen, M., Miao, D.: Precision of rough set clustering. In: {156}, pp. 369-378
[40]
Chmielewski, M.R., Grzymala-Busse, J.W.: Global discretization of continuous attributes as preprocessing for machine learning. Int. J. Approx. Reasoning 15, 319-331 (1996)
[41]
Nguyen, H.S.: Discretization problem for rough sets methods. In: {157}, pp. 545- 552
[42]
Skowron, A., Synak, P.: Reasoning in information maps. Fundamenta Informaticae 59, 241-259 (2004)
[43]
Skowron, A., Synak, P.: Hierarchical information maps. In: {154}, pp. 622-631
[44]
Slezak, D.: Approximate reducts in decision tables. In: International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada, Spain, vol. 3, pp. 1159-1164 (1996)
[45]
Nguyen, H.S., Slezak, D.: Approximate reducts and association rules - correspondence and complexity results. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 137-145. Springer, Heidelberg (1999)
[46]
Slezak, D.: Association reducts: A framework for mining multi-attribute dependencies. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 354-363. Springer, Heidelberg (2005)
[47]
Slezak, D.: Association reducts: Complexity and heuristics. In: {158}, pp. 157-164
[48]
Slezak, D.: Approximate entropy reducts. Fundam. Inf. 53, 365-390 (2002)
[49]
Grzymala-Busse, J.W., Ziarko, W.: Data mining based on rough sets, pp. 142-173 (2003)
[50]
Dong, G., Li, J.: Mining border descriptions of emerging patterns from dataset pairs. Knowledge Information Systems 8, 178-202 (2005)
[51]
Bailey, J., Manoukian, T., Ramamohanarao, K.: A fast algorithm for computing hypergraph transversals and its application in mining emerging patterns. In: ICDM, pp. 485-488. IEEE Computer Society, Los Alamitos (2003)
[52]
Li, J., Liu, G., Wong, L.: Mining statistically important equivalence classes and delta-discriminative emerging patterns. In: Berkhin, P., Caruana, R., Wu, X. (eds.) KDD, pp. 430-439. ACM, New York (2007)
[53]
Loekito, E., Bailey, J.: Fast mining of high dimensional expressive contrast patterns using zero-suppressed binary decision diagrams. In: Eliassi-Rad, T., Ungar, L.H., Craven, M., Gunopulos, D. (eds.) KDD, pp. 307-316. ACM, New York (2006)
[54]
Fan, H., Ramamohanarao, K.: Fast discovery and the generalization of strong jumping emerging patterns for building compact and accurate classifiers. IEEE Trans. on Knowl. and Data Eng. 18, 721-737 (2006)
[55]
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Intelligent Decision Support. Handbook of Applications and Advances of of the Rough Sets Theory, pp. 331-362 (1992)
[56]
Kryszkiewicz, M.: Algorithms for knowledge reduction in information systems. PhD thesis, Warsaw University of Technology, Institute of Computer Science (1994) (in Polish)
[57]
Kryszkiewicz, M., Cichon, K.: Towards scalable algorithms for discovering rough set reducts. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 120-143. Springer, Heidelberg (2004)
[58]
Han, J., Wang, J., Lu, Y., Tzvetkov, P.: Mining top-k frequent closed patterns without minimum support. In: ICDM, pp. 211-218. IEEE Computer Society, Los Alamitos (2002)
[59]
Wang, J., Lu, Y., Tzvetkov, P.: Tfp: An efficient algorithm for mining top-k frequent closed itemsets. IEEE Trans. on Knowl. and Data Eng. 17, 652-664 (2005)
[60]
Ramamohanarao, K., Bailey, J., Fan, H.: Efficient mining of contrast patterns and their applications to classification. In: ICISIP, pp. 39-47. IEEE Computer Society, Washington (2005)
[61]
Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association rules. ACM Trans. Inf. Syst. 22, 381-405 (2004)
[62]
Antonie, M.L., Zaïane, O.R.: Mining positive and negative association rules: An approach for confined rules. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 27-38. Springer, Heidelberg (2004)
[63]
Padmanabhan, B., Tuzhilin, A.: Small is beautiful: discovering the minimal set of unexpected patterns. In: KDD, Boston, Massachusetts, United States, pp. 54-63. ACM, New York (2000)
[64]
Hussain, F., Liu, H., Suzuki, E., Lu, H.: Exception rule mining with a relative interestingness measure. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 86-97. Springer, Heidelberg (2000)
[65]
Li, Y., Guan, C.: An extended EM algorithm for joint feature extraction and classification in brain-computer interfaces. Neural Comput. 18, 2730-2761 (2006)
[66]
Jackson, Q., Landgrebe, D.: An adaptive classifier design for high-dimensional data analysis with a limited training data set. IEEE Transactions on Geoscience and Remote Sensing 39, 2664-2679 (2001)
[67]
Qian, X., Bailey, J., Leckie, C.: Mining generalised emerging patterns. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 295-304. Springer, Heidelberg (2006)
[68]
Ting, R.M.H., Bailey, J.: Mining minimal contrast subgraph patterns. In: Ghosh, J., Lambert, D., Skillicorn, D.B., Srivastava, J. (eds.) SDM. SIAM, Philadelphia (2006)
[69]
Dominik, A., Walczak, Z., Wojciechowski, J.: Classification of web documents using a graph-based model and structural patterns. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 67-78. Springer, Heidelberg (2007)
[70]
Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: {159}, pp. 13-23
[71]
Wroblewski, J.: Adaptive methods of object classification. PhD thesis, University of Warsaw, Institute of Mathematics, Computer Science and Mechanics (2001)
[72]
Wroblewski, J.: Finding minimal reducts using genetic algorithm. In: Joint Conference on Information Sciences, Wrightsville Beach, NC, pp. 186-189 (1995)
[73]
Bazan, J.G., Szczuka, M.S.: Rses and rseslib - a collection of tools for rough set computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 106-113. Springer, Heidelberg (2001)
[74]
Bazan, J.G.: Approximation inferencing methods for synthesis of decision algorithms. PhD thesis, University of Warsaw, Institute of Mathematics, Computer Science and Mechanics (1998) (in Polish)
[75]
Fan, H., Ramamohanarao, K.: An efficient single-scan algorithm for mining essential jumping emerging patterns for classification. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 456-462. Springer, Heidelberg (2002)
[76]
Terlecki, P., Walczak, K.: Jumping emerging pattern induction by means of graph coloring and local reducts in transaction databases. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 363-370. Springer, Heidelberg (2007)
[77]
Terlecki, P., Walczak, K.: Local projection in jumping emerging patterns discovery in transaction databases. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 723-730. Springer, Heidelberg (2008)
[78]
Terlecki, P., Walczak, K.: Jumping emerging patterns with negation in transaction databases - classification and discovery. Information Sciences 177, 5675-5690 (2007)
[79]
Li, J., Ramamohanarao, K., Dong, G.: The space of jumping emerging patterns and its incremental maintenance algorithms. In: Langley, P. (ed.) ICML, pp. 551- 558. Morgan Kaufmann, San Francisco (2000)
[80]
Wang, L., Zhao, H., Dong, G., Li, J.: On the complexity of finding emerging patterns. Theor. Comput. Sci. 335, 15-27 (2005)
[81]
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: SIGMOD, Dallas, Texas, United States, pp. 1-12. ACM, New York (2000)
[82]
Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, USA (1967)
[83]
Romanski, S.: Operations on families of sets for exhaustive search, given a monotonic function. In: JCDKB, Jerusalem, Israel, pp. 310-322 (1988)
[84]
Romanski, S.: An Algorithm Searching for the Minima of Monotonic Boolean Function and its Applications. PhD thesis, Warsaw University of Technology (1989)
[85]
Liu, B., Ma, Y., Wong, C.K.: Improving an association rule based classifier. In: {159}, pp. 504-509
[86]
Li, W.: Classification based on multiple association rules (2001)
[87]
Garriga, G.C., Kralj, P., Lavrač, N.: Closed sets for labeled data. J. Mach. Learn. Res. 9, 559-580 (2008)
[88]
Bayardo Jr., R.J.: Efficiently mining long patterns from databases. In: SIGMOD, Seattle, Washington, United States, pp. 85-93. ACM, New York (1998)
[89]
Meretakis, D., Wüthrich, B.: Extending naïve bayes classifiers using long itemsets. In: KDD, San Diego, California, United States, pp. 165-174. ACM, New York (1999)
[90]
Wang, Z., Fan, H., Ramamohanarao, K.: Exploiting maximal emerging patterns for classification. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 1062-1068. Springer, Heidelberg (2004)
[91]
Soulet, A., Crémilleux, B., Rioult, F.: Condensed representation of eps and patterns quantified by frequency-based measures. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377, pp. 173-189. Springer, Heidelberg (2005)
[92]
Soulet, A., Kléma, J., Crémilleux, B.: Efficient mining under rich constraints derived from various datasets. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 223-239. Springer, Heidelberg (2007)
[93]
Bailey, J., Manoukian, T., Ramamohanarao, K.: Fast algorithms for mining emerging patterns. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 39-50. Springer, Heidelberg (2002)
[94]
Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent patterns with counting inference. SIGKDD Explorations Newsletter 2, 66-75 (2000)
[95]
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398-416. Springer, Heidelberg (1998)
[96]
Li, J.: Mining Emerging Patterns to Contruct Accurate and Efficient Classifiers. PhD thesis, University of Melbourne (2001)
[97]
Li, J., Dong, G., Ramamohanarao, K.: Instance-based classification by emerging patterns. In: {159}, pp. 191-200
[98]
Li, J., Dong, G., Ramamohanarao, K., Wong, L.: DeEPs: A new instance-based lazy discovery and classification system. Mach. Learn. 54, 99-124 (2004)
[99]
Fan, H.: Efficient Mining of Interesting Emerging Patterns and Their Effective Use in Classification. PhD thesis, University of Melbourne (2004)
[100]
Merris, R.: Graph Theory. Wiley Interscience, New York (2000)
[101]
Berge, C.: Hypergraphs, vol. 45. Elsevier, Amsterdam (1989)
[102]
Kavvadias, D.J., Stavropoulos, E.C.: Evaluation of an algorithm for the transversal hypergraph problem. In: Vitter, J.S., Zaroliagis, C.D. (eds.)WAE 1999. LNCS, vol. 1668, pp. 72-84. Springer, Heidelberg (1999)
[103]
Elbassioni, K.M.: On the complexity of monotone dualization and generating minimal hypergraph transversals. Discrete Appl. Math. 156, 2109-2123 (2008)
[104]
Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35, 677-691 (1986)
[105]
Aloul, F.A., Mneimneh, M.N., Sakallah, K.A.: Zbdd-based backtrack search sat solver. In: IWLS, pp. 131-136 (2002)
[106]
ichi Minato, S.: Binary decision diagrams and applications for VLSI CAD. Kluwer Academic Publishers, Norwell (1996)
[107]
Cerny, E., Marin, M.A.: An approach to unified methodology of combinational switching circuits. IEEE Transactions on Computers 26, 745-756 (1977)
[108]
ichi Minato, S.: Zero-suppressed bdds for set manipulation in combinatorial problems. In: DAC, pp. 272-277. ACM, New York (1993)
[109]
Mishchenko, A.: An introduction to zero-suppressed binary decision diagrams, Tutorial (2001)
[110]
Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13, 21-27 (1967)
[111]
Wegener, I.: The complexity of Boolean functions. John Wiley & Sons, Inc., New York (1987)
[112]
Cykier, A.: Prime implicants of boolean functions, methods for finding and application (1997) (in polish)
[113]
Kryszkiewicz, M.: Fast algorithm finding reducts of monotonic boolean functions. ICS Research Report 42/93 (1993)
[114]
Anderson, M.: Synthesis of Information Systems. Warsaw University of Technology (1994) (in Polish)
[115]
Brown, F.M.: Boolean Reasoning. Kluwer Academic Publishers, Dordrecht (1990)
[116]
Garfinkel, R., Nemhauser, G.L.: Integer programming. John Wiley & Sons, New York (1978)
[117]
Susmaga, R.: Parallel computation of reducts. In: {157}, pp. 450-457
[118]
Zhou, P.L., Mohammed, S.: A reduct solving parallel algorithm based on relational extension matrix. In: Arabnia, H.R. (ed.) PDPTA, pp. 924-931. CSREA Press (2007)
[119]
Bjorvand, A.T., Komorowski, J.: Practical applications of genetic algorithms for efficient reduct computation. In: IMACS
[120]
Walczak, Z., Dominik, A., Terlecki, P.: Space decomposition in the minimal reduct problem. In: National Conference on Evolutionary Computation and Global Optimization, Kazimierz Dolny, Poland. Warsaw University of Technology (2004)
[121]
Sapiecha, P.: An approximation algorithm for a certain class of np-hard problems. In: ICS Research Report 21/92 (1992)
[122]
Wang, X., Yang, J., Peng, N., Teng, X.: Finding minimal rough set reducts with particle swarm optimization. In: {154}, pp. 451-460
[123]
Ke, L., Feng, Z., Ren, Z.: An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recogn. Lett. 29, 1351-1357 (2008)
[124]
Terlecki, P., Walczak, K.: Attribute set dependence in apriori-like reduct computation. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 268-276. Springer, Heidelberg (2006)
[125]
Terlecki, P., Walczak, K.: Attribute set dependence in reduct computation. Transactions on Computational Science 2, 118-132 (2008)
[126]
Kryszkiewicz, M., Lasek, P.: Fast discovery of minimal sets of attributes functionally determining a decision attribute. In: Kryszkiewicz, M., Peters, J.F., Rybi ński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 320- 331. Springer, Heidelberg (2007)
[127]
Kryszkiewicz, M., Lasek, P.: Fun: Fast discovery of minimal sets of attributes functionally determining a decision attribute. T. Rough Sets 9, 76-95 (2008)
[128]
Bodon, F.: A fast apriori implementation. In: Goethals, B., Zaki, M.J. (eds.) FIMI. CEUR Workshop Proceedings, vol. 90 (2003), CEUR-WS.org
[129]
Komorowski, J., Ohrn, A., Skowron, A.: Case studies: Public domain, multiple mining tasks systems: Rosetta rough sets, pp. 554-559 (2002)
[130]
Terlecki, P., Walczak, K.: On the relation between rough set reducts and jumping emerging patterns. Information Sciences 177, 74-83 (2007)
[131]
Terlecki, P., Walczak, K.: Local reducts and jumping emerging patterns in relational databases. In: {158}, pp. 358-367
[132]
Shan, N., Ziarko, W.: An incremental learning algorithm for constructing decision rules. In: International Workshop on Rough Sets and Knowledge Discovery, Banff, Canada, pp. 326-334. Springer, Heidelberg (1994)
[133]
Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: Generalizing association rules to correlations. In: Peckham, J. (ed.) SIGMOD, pp. 265-276. ACM Press, New York (1997)
[134]
Ruiz, I.F., Balcázar, J.L., Bueno, R.M.: Bounding negative information in frequent sets algorithms. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 50-58. Springer, Heidelberg (2001)
[135]
Savasere, A., Omiecinski, E., Navathe, S.B.: Mining for strong negative associations in a large database of customer transactions. In: ICDE, pp. 494-502. IEEE Computer Society, Los Alamitos (1998)
[136]
Yuan, X., Buckles, B.P., Yuan, Z., Zhang, J.: Mining negative association rules. In: ISCC, pp. 623-628. IEEE Computer Society, Los Alamitos (2002)
[137]
Boulicaut, J.F., Bykowski, A., Jeudy, B.: Towards the tractable discovery of association rules with negations. In: FQAS, Warsaw, Poland, pp. 425-434 (2000)
[138]
Kryszkiewicz, M., Cichon, K.: Support oriented discovery of generalized disjunction-free representation of frequent patterns with negation. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 672-682. Springer, Heidelberg (2005)
[139]
Cichosz, P.: Learning systems. WNT, Warsaw (2000) (in Polish)
[140]
Terlecki, P., Walczak, K.: Local table condensation in rough set approach for jumping emerging pattern induction. In: ICCS Workshop. Springer, Sheffield (2007)
[141]
Terlecki, P., Walczak, K.: Efficient discovery of top-k minimal jumping emerging patterns. In: {156}, pp. 438-447
[142]
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39, 1-38 (1977)
[143]
Blum, A., Mitchell, T.M.: Combining labeled and unlabeled sata with co-training. In: COLT, pp. 92-100 (1998)
[144]
Terlecki, P., Walczak, K.: Adaptive classification with jumping emerging patterns. In: {155}, pp. 39-46.
[145]
Delany, S.J., Cunningham, P., Doyle, D., Zamolotskikh, A.: Generating estimates of classification confidence for a case-based spam filter. In:Muñoz- Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 177-190. Springer, Heidelberg (2005)
[146]
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119-139 (1997)
[147]
Dehuri, S., Patnaik, S., Ghosh, A., Mall, R.: Application of elitist multi-objective genetic algorithm for classification rule generation. Appl. Soft Comput. 8, 477-487 (2008)
[148]
Vailaya, A., Jain, A.K.: Reject option for vq-based bayesian classification, pp. 2048-2051 (2000)
[149]
Mascarilla, L., Frélicot, C.: Reject strategies driven combination of pattern classifiers. Pattern Anal. Appl. 5, 234-243 (2002)
[150]
Li, J., Manoukian, T., Dong, G., Ramamohanarao, K.: Incremental maintenance on the border of the space of emerging patterns. Data Min. Knowl. Discov. 9, 89-116 (2004)
[151]
Fumera, G., Pillai, I., Roli, F.: Classification with reject option in text categorisation systems. In: ICIAP, pp. 582-587. IEEE Computer Society, Los Alamitos (2003)
[152]
Chow, C.K.: On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory 16, 41-46 (1970)
[153]
Asuncion, A., Newman, D.: UCI machine learning repository (2007)
[154]
Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: IJCAI, pp. 1022-1029 (1993)
[155]
Kohavi, R., John, G.H., Long, R., Manley, D., Pfleger, K.: Mlc++: A machine learning library in c++. In: ICTAI, New Orleans, Louisiana, USA, pp. 740-743 (1994)
[156]
Karypsis, G.: Cluto. a clustering toolkit. release 2.0 (2002)
[157]
Dong, G., Tang, C., Wang, W.: WAIM 2003. LNCS, vol. 2762. Springer, Heidelberg (2003)
[158]
Zighed, D.A., Komorowski, H.J., Zytkow, J.M. (eds.): PKDD 2000. LNCS, vol. 1910. Springer, Heidelberg (2000)
[159]
Polkowski, L., Skowron, A. (eds.): RSCTC 1998. LNCS, vol. 1424. Springer, Heidelberg (1998)
[160]
Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.): RSFDGrC 2005. LNCS (LNAI), vol. 3641. Springer, Heidelberg (2005)
[161]
Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.): RSCTC 2008. LNCS (LNAI), vol. 5306. Springer, Heidelberg (2008)
[162]
Wang, G., Rui Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y.: RSKT 2008. LNCS (LNAI), vol. 5009. Springer, Heidelberg (2008)
[163]
Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowi ński, R. (eds.): RSCTC 2006. LNCS (LNAI), vol. 4259. Springer, Heidelberg (2006)

Cited By

View all
  • (2016)Efficient Mining of Discriminating Relationships Among Attributes Involving Arithmetic OperationsComputational Intelligence10.1111/coin.1205232:1(102-126)Online publication date: 1-Feb-2016

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide books
Transactions on rough sets XII
January 2010
339 pages
ISBN:3642144667

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 January 2010

Qualifiers

  • Chapter

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2016)Efficient Mining of Discriminating Relationships Among Attributes Involving Arithmetic OperationsComputational Intelligence10.1111/coin.1205232:1(102-126)Online publication date: 1-Feb-2016

View Options

View options

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media