Improving Spatial Landslide Prediction with 3D Slope Stability Analysis and Genetic Algorithm Optimization: Application to the Oltrepò Pavese
<p>Description of the methodology.</p> "> Figure 2
<p>One-cell sketch for the transient rainfall infiltration and grid-based regional slope-stability model (TRIGRS) model [<a href="#B52-water-13-00801" class="html-bibr">52</a>].</p> "> Figure 3
<p>Diagram showing a 3D search lattice above a digital elevation model (DEM). Each dot represents the center of multiple spherical trial surfaces [<a href="#B44-water-13-00801" class="html-bibr">44</a>].</p> "> Figure 4
<p>(<b>a</b>–<b>d</b>) Examples of landslide in the study area [<a href="#B70-water-13-00801" class="html-bibr">70</a>]; (<b>e</b>) catchment within Oltrepò Pavese region.</p> "> Figure 5
<p>(<b>a</b>) Catchment topography with observed landslides triggered after the extreme rainfall on 27–28 April 2009 and location of soil thickness sampling points. Maximum and minimum areas (a<sub>min</sub>, a<sub>max</sub>) considered as lower and upper limits in the optimization process of the slip-surface search parameters for SCCOPS 3D are also represented; (<b>b</b>) catchment slope.</p> "> Figure 6
<p>Measured vs. estimated soil thickness points.</p> "> Figure 7
<p>(<b>a</b>) Hourly rainfall series used in input for simulations; (<b>b</b>) simulated catchment-averaged pressure head series; (<b>c</b>) simulated potential unstable cells for the event of 27–28 April 2009 (1D analysis using TRIGRS v. 2.1).</p> "> Figure 8
<p>Comparison of the results of TRIGRS and SCOOPS 3D in the false positive rate (FPR)–true positive rate (TPR) space. Selection of the ultimate solution of SCOOPS 3D.</p> "> Figure 9
<p>(<b>a</b>) Factor of safety spatial distribution as a result of 1D slope stability analysis (Simulation I); (<b>b</b>) factor of safety spatial distribution as a result of 3D slope stability analysis (Simulation II); (<b>c</b>) cumulative frequency of the factor of safety resulting by both 1D and 3D models.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pressure Head Computation by TRIGRS Model (The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model—V.2.1)
Infiltration, Runoff and Flow Routing
2.2. Slope Stability Analysis by TRIGRS Model (The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model—V.2.1)
2.3. Slope Stability Analysis by SCOOPS 3D Model (Software to Analyze Three-Dimensional Slope Stability throughout a Digital Landscape)
2.3.1. SCOOPS 3D Search Grid Configuration and Optimization by NSGAII Genetic Algorithm
2.4. Simulation Framework
2.5. Study Area
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Stancanelli, L.M.; Peres, D.J.; Cancelliere, A.; Foti, E. A combined triggering-propagation modeling approach for the assessment of rainfall induced debris flow susceptibility. J. Hydrol. 2017, 550, 130–143. [Google Scholar] [CrossRef] [Green Version]
- Peres, D.J.; Cancelliere, A. Analisi degli impatti dei cambiamenti climatici sull’innesco di frane superficiali. L’acqua Riv. Bimest. dell’Associazione Idrotec. Ital. 2018, 2, 71–82. [Google Scholar]
- Manenti, S.; Amicarelli, A.; Palazzolo, N.; Bordoni, M.; Creaco, E.; Meisina, C. Post-failure dynamics of rainfall-induced landslide in oltrepò pavese. Water 2020, 12, 2555. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Piciullo, L.; Calvello, M.; Cepeda, J.M. Territorial early warning systems for rainfall-induced landslides. Earth-Sci. Rev. 2018, 179, 228–247. [Google Scholar] [CrossRef]
- Bordoni, M.; Corradini, B.; Lucchelli, L.; Valentino, R.; Bittelli, M.; Vivaldi, V.; Meisina, C. Empirical and physically based thresholds for the occurrence of shallow landslides in a prone area of Northern Italian Apennines. Water 2019, 11, 2653. [Google Scholar] [CrossRef] [Green Version]
- Aleotti, P. A warning system for rainfall-induced shallow failures. Eng. Geol. 2004, 73, 247–265. [Google Scholar] [CrossRef]
- Cannon, S.H.; Gartner, J.E.; Wilson, R.C.; Bowers, J.C.; Laber, J.L. Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 2008, 96, 250–269. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 2008, 100, 429–443. [Google Scholar] [CrossRef]
- Giannecchini, R.; Galanti, Y.; D’Amato Avanzi, G. Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Nat. Hazards Earth Syst. Sci. 2012, 12, 829–842. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Innes, J.L. Debris flows. Prog. Phys. Geogr. Earth Environ. 1983, 7, 469–501. [Google Scholar] [CrossRef]
- Leonarduzzi, E.; Molnar, P.; McArdell, B.W. Predictive performance of rainfall thresholds for shallow landslides in Switzerland from gridded daily data. Water Resour. Res. 2017, 53, 6612–6625. [Google Scholar] [CrossRef] [Green Version]
- Peruccacci, S.; Brunetti, M.T.; Luciani, S.; Vennari, C.; Guzzetti, F. Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 2012, 139–140, 79–90. [Google Scholar] [CrossRef]
- Hong, Y.; Alder, R.; Huffman, G. Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Nikolopoulos, E.I.; Crema, S.; Marchi, L.; Marra, F.; Guzzetti, F.; Borga, M. Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence. Geomorphology 2014, 221, 286–297. [Google Scholar] [CrossRef]
- Peres, D.J.; Cancelliere, A.; Greco, R.; Bogaard, T.A. Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds. Nat. Hazards Earth Syst. Sci. 2018, 18, 633–646. [Google Scholar] [CrossRef] [Green Version]
- Marra, F. Rainfall thresholds for landslide occurrence: Systematic underestimation using coarse temporal resolution data. Nat. Hazards 2019, 95, 883–890. [Google Scholar] [CrossRef]
- Baum, R.L.; Godt, J.W. Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 2010, 7, 259–272. [Google Scholar] [CrossRef]
- Lepore, C.; Arnone, E.; Noto, L.V.; Sivandran, G.; Bras, R.L. Physically based modeling of rainfall-triggered landslides: A case study in the Luquillo forest, Puerto Rico. Hydrol. Earth Syst. Sci. 2013, 17, 3371–3387. [Google Scholar] [CrossRef] [Green Version]
- Segoni, S.; Leoni, L.; Benedetti, A.I.; Catani, F.; Righini, G.; Falorni, G.; Gabellani, S.; Rudari, R.; Silvestro, F.; Rebora, N. Towards a definition of a real-time forecasting network for rainfall induced shallow landslides. Nat. Hazards Earth Syst. Sci. 2009, 9, 2119–2133. [Google Scholar] [CrossRef] [Green Version]
- Alvioli, M.; Baum, R.L. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ. Model. Softw. 2016, 81, 122–135. [Google Scholar] [CrossRef]
- Bordoni, M.; Persichillo, M.G.; Meisina, C.; Cevasco, A.; Giannecchini, R.; D’Amato Avanzi, G.; Galanti, Y.; Bartelletti, C.; Brandolini, P.; Zizioli, D. Developing and testing a data-driven methodology for shallow landslide susceptibility assessment: Preliminary results. Rend. Online Soc. Geol. Ital. 2015, 35, 25–28. [Google Scholar] [CrossRef]
- Bordoni, M.; Bittelli, M.; Valentino, R.; Chersich, S.; Meisina, C. Improving the estimation of complete field soil water characteristic curves through field monitoring data. J. Hydrol. 2017, 552, 283–305. [Google Scholar] [CrossRef]
- Valentino, R.; Montrasio, L.; Losi, G.L.; Bittelli, M. An empirical model for the evaluation of the degree of saturation of shallow soils in relation to rainfalls. Can. Geotech. J. 2011, 48, 795–809. [Google Scholar] [CrossRef] [Green Version]
- Rosso, R.; Rulli, M.C.; Vannucchi, G. A physically based model for the topographic control on shallow landsliding. Water Resour. Res. 2006, 30, 1153–1171. [Google Scholar] [CrossRef]
- Crosta, G.B.; Frattini, P. Distributed Modelling of Shallow Landslides Triggered by Intense Rainfal. Nat. Hazards Earth Syst. Sci. 2003, 3, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Peres, D.J.; Cancelliere, A. Estimating return period of landslide triggering by Monte Carlo simulation. J. Hydrol. 2016, 541, 256–271. [Google Scholar] [CrossRef]
- Yao, W.; Li, C.; Zhan, H.; Zeng, J. Time-dependent slope stability during intense rainfall with stratified soil water content. Bull. Eng. Geol. Environ. 2019, 78, 4805–4819. [Google Scholar] [CrossRef]
- Salvatici, T.; Tofani, V.; Rossi, G.; D’Ambrosio, M.; Tacconi Stefanelli, C.; Benedetta Masi, E.; Rosi, A.; Pazzi, V.; Vannocci, P.; Petrolo, M.; et al. Application of a physically based model to forecast shallow landslides at a regional scale. Nat. Hazards Earth Syst. Sci. 2018, 18, 1919–1935. [Google Scholar] [CrossRef] [Green Version]
- Zieher, T.; Schneider-Muntau, B.; Mergili, M. Are real-world shallow landslides reproducible by physically-based models? Four test cases in the Laternser valley, Vorarlberg (Austria). Landslides 2017, 14, 2009–2023. [Google Scholar] [CrossRef] [Green Version]
- Raia, S.; Alvioli, M.; Rossi, M.; Baum, R.L.; Godt, J.W.; Guzzetti, F. Improving predictive power of physically based rainfall-induced shallow landslide models: A probabilistic approach. Geosci. Model Dev. 2014, 7, 495–514. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.Y.; Chen, H.E.; Yeh, K.C. Investigation of the influence of rainfall runoff on shallow landslides in unsaturated soil using a mathematical model. Water 2019, 11, 1178. [Google Scholar] [CrossRef] [Green Version]
- Strauch, R.; Istanbulluoglu, E.; Riedel, J. A new approach to mapping landslide hazards: A probabilistic integration of empirical and physically based models in the North Cascades of Washington, USA. Nat. Hazards Earth Syst. Sci. 2019, 19, 2477–2495. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, P.; Or, D. Hydromechanical triggering of landslides: From progressive local failures to mass release. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Bellugi, D.; Milledge, D.G.; Dietrich, W.E.; McKean, J.A.; Perron, J.T.; Sudderth, E.B.; Kazian, B. A spectral clustering search algorithm for predicting shallow landslide size and location. J. Geophys. Res. Earth Surf. 2015, 120, 300–324. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, G.G.; Fatichi, S.; Burlando, P. An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions. Water Resour. Res. 2015, 51, 7501–7523. [Google Scholar] [CrossRef]
- Milledge, D.G.; Bellugi, D.; McKean, J.A.; Densmore, A.L.; Dietrich, W.E. A multidimensional stability model for predicting shallow landslide size and shape across landscapes. J. Geophys. Res. F Earth Surf. 2014, 119, 2481–2504. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.Y.; Tang, C.L.; Chan, Y.C.; Hu, J.C.; Chi, C.C. Forecasting landslide hazard by the 3D discrete element method: A case study of the unstable slope in the Lushan hot spring district, central Taiwan. Eng. Geol. 2014, 183, 14–30. [Google Scholar] [CrossRef]
- Dai, Z.; Huang, Y.; Cheng, H.; Xu, Q. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake. Eng. Geol. 2014, 180, 21–33. [Google Scholar] [CrossRef]
- Fan, L.; Lehmann, P.; Or, D. Load redistribution rules for progressive failure in shallow landslides: Threshold mechanical models. Geophys. Res. Lett. 2017, 44, 228–235. [Google Scholar] [CrossRef]
- Reid, M.E.; Christian, S.B.; Brien, D.L.; Henderson, S.T. Scoops3D—Software to Analyze Three-Dimensional Slope Stability Throughout a Digital Landscape; US Geological Survey Techniques and Methods: Denver, CO, USA, 2015; p. 218. [Google Scholar] [CrossRef] [Green Version]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS-A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis; U.S. Geological Survey Open-File Report; Denver Publishing Service Center: Denver, MD, USA, 2002. [Google Scholar]
- Tran, T.V.; Alvioli, M.; Lee, G.; An, H.U. Three-dimensional, time-dependent modeling of rainfall-induced landslides over a digital landscape: A case study. Landslides 2018, 15, 1071–1084. [Google Scholar] [CrossRef]
- He, J.; Qiu, H.; Qu, F.; Hu, S.; Yang, D.; Shen, Y.; Zhang, Y.; Sun, H.; Cao, M. Prediction of spatiotemporal stability and rainfall threshold of shallow landslides using the TRIGRS and Scoops3D models. Catena 2021, 197, 104999. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Liu, H.; Li, G.; Cumberland, W.G.; Wu, T. Testing Statistical Significance of the Area under a Receiving Operating Characteristics Curve for Repeated Measures Design with Bootstrapping. J. Data Sci. 2005, 3, 257–278. [Google Scholar]
- Capparelli, G. Applicazione al Caso della Calabria Centrale. Atti del XXXIII Corso di Aggiornamento in Tecniche di Difesa dall’Inquinamento, Guardia Piemontese (CS); EdiBios: Cosenza, Italy, 2012; pp. 203–232. [Google Scholar]
- Marino, P.; Peres, D.J.; Cancelliere, A.; Greco, R.; Bogaard, T.A. Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach. Landslides 2020, 17, 2041–2054. [Google Scholar] [CrossRef]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS-A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis version 2.0; U.S. Geological Survey Open-File Report; Denver Publishing Service Center: Denver, MD, USA, 2008; pp. 1–4. [Google Scholar]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Savage, W.Z.; Godt, J.W.; Baum, R.L. A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration. In Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment 2003, Davos, Switzerland, 10–12 September 2003; Volume 1, pp. 179–187. [Google Scholar]
- Gardner, W.R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 1958, 85. [Google Scholar] [CrossRef]
- Srivastava, R.; Yeh, T.-C.J. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour. Res. 1991, 27, 753–762. [Google Scholar] [CrossRef]
- Taylor, D.W. Fundamentals of Soil Mechanics; Wiley: New York, NY, USA, 1948. [Google Scholar]
- Peres, D.J.; Cancelliere, A. Modeling impacts of climate change on return period of landslide triggering. J. Hydrol. 2018, 567, 420–434. [Google Scholar] [CrossRef]
- Fellenius, W. Calculation of stability of earth dam. In Proceedings of the Transaction 2nd Congr. Large Dam, Washington, DC, USA, 7–12 September 1936; Volume 4, pp. 445–462. [Google Scholar]
- Bishop, W.A. The use of the slip circle in the stability analysis of slopes. Geotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
- Spencer, E. A method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique 1967, 17, 11–26. [Google Scholar] [CrossRef]
- Hungr, O. An extension of Bishop’s simplified method of slope stability analysis to three dimensions. Geotechnique 1987, 37, 113–117. [Google Scholar] [CrossRef]
- Lam, L.; Fredlund, D.G. A general limit equilibrium model for three-dimensional slope stability analysis. Can. Geotech. J. 1993, 30, 905–919. [Google Scholar] [CrossRef]
- Brien, D.L.; Reid, M.E. Modeling 3-D Slope Stability of Coastal Bluffs, Using 3-D Ground-Water Flow, Southwestern Seattle, Washington. Sci. Investig. Rep. 2007-5092 2007, 61. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- McCall, J. Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math. 2005, 184, 205–222. [Google Scholar] [CrossRef]
- Bajpai, P.; Kumar, M. Genetic algorithm–an approach to solve global optimization problems. Indian J. Comput. Sci. Eng. 2010, 1, 199–206. [Google Scholar]
- Reed, P.; Minsker, B.S.; Goldberg, D.E. Simplifying multiobjective optimization: An automated design methodology for the nondominated sorted genetic algorithm-II. Water Resour. Res. 2003, 39, 1–6. [Google Scholar] [CrossRef]
- Yusoff, Y.; Ngadiman, M.S.; Zain, A.M. Overview of NSGA-II for optimizing machining process parameters. Procedia Eng. 2011, 15, 3978–3983. [Google Scholar] [CrossRef] [Green Version]
- Valentino, R.; Meisina, C.; Montrasio, L.; Losi, G.L.; Zizioli, D. Predictive Power Evaluation of a Physically Based Model for Shallow Landslides in the Area of Oltrepò Pavese, Northern Italy. Geotech. Geol. Eng. 2014, 32, 783–805. [Google Scholar] [CrossRef]
- Bordoni, M.; Meisina, C.; Valentino, R.; Bittelli, M.; Chersich, S. Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS. Nat. Hazards Earth Syst. Sci. 2015, 15, 1025–1050. [Google Scholar] [CrossRef] [Green Version]
- Tesfa, T.K.; Tarboton, D.G.; Chandler, D.G.; Mcnamara, J.P. Modeling soil depth from topographic and land cover attributes. Water Resour. Res 2009, 45, 10438. [Google Scholar] [CrossRef]
- Salciarini, D.; Godt, J.W.; Savage, W.Z.; Conversini, P.; Baum, R.L.; Michael, J.A. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides 2006, 3, 181–194. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Rasmussen, C. Geomorphically based predictive mapping of soil thickness in upland watersheds. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Catani, F.; Segoni, S.; Falorni, G. An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resour. Res. 2010, 46, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Saulnier, G.M.; Beven, K.; Obled, C. Including spatially variable effective soil depths in TOPMODEL. J. Hydrol. 1997, 202, 158–172. [Google Scholar] [CrossRef]
- Méndez-Barroso, L.A.; Vivoni, E.R.; Mascaro, G. Impact of spatially-variable soil thickness and texture on simulated hydrologic conditions in a semiarid watershed in northwest Mexico. Rev. Mex. Cienc. Geol. Cienc. Geol. 2016, 33, 365–377. [Google Scholar]
- Zizioli, D.; Meisina, C.; Valentino, R.; Montrasio, L. Comparison between different approaches to modeling shallow landslide susceptibility: A case history in Oltrepo Pavese, Northern Italy. Nat. Hazards Earth Syst. Sci. 2013, 13, 559–573. [Google Scholar] [CrossRef] [Green Version]
- Park, D.W.; Nikhil, N.V.; Lee, S.R. Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Nat. Hazards Earth Syst. Sci. 2013, 13, 2833–2849. [Google Scholar] [CrossRef] [Green Version]
- Baum, R.L.; Godt, J.W.; Savage, W.Z. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef]
Observed Landslide | |||
---|---|---|---|
Landslide (P) | No Landslide (N) | ||
Predicted Landslide | Landslide: FS < 1 | TP | FP |
No landslide: FS ≥ 1 | FN | TN |
c′ | KS | D0 | |||||||
---|---|---|---|---|---|---|---|---|---|
[kN·m−3] | [°] | [kPa] | [-] | [-] | [kPa−1] | [m·s−1] | [m·s−1] | [m] | [m] |
18 | 26 | 3.8 | 0.46 | 0.08 | 0.014 | 1.4·10−5 | 2.8·10−4 | 2.4 | 0.5 |
zs,min | zs,max | amin | amax | Δr, increment | |
---|---|---|---|---|---|
[m] | [m] | [m2] | [m2] | [m] | |
Lower limit | 100 | 300 | 500 | 6300 | 0.25 |
Upper limit | 200 | 600 | 2500 | 25,000 | 25 |
FPR | TPR | TSS | zs,min | zs,max | amin | amax | ∆r, increment | |
---|---|---|---|---|---|---|---|---|
[-] | [-] | [-] | [m] | [m] | [m2] | [m2] | [m] | |
Simulation I | 0.12 | 0.21 | 0.09 | - | - | - | - | - |
Simulation II | 0.39 | 0.76 | 0.37 | 100 | 300.5 | 596 | 16,074 | 21 |
FS Class | Observed Sites (a) | Observed Sites (%) (c) | Predicted Area (%) (d) | LRclass (e) = (c)/(d) | %LRclass (e)/(f) | |||||
---|---|---|---|---|---|---|---|---|---|---|
3D | 1D | 3D | 1D | 3D | 1D | 3D | 1D | 3D | 1D | |
FS < 1 | 2365 | 676 | 73.4 | 21 | 37.5 | 12.8 | 1.9 | 1.6 | 82 | 64.5 |
FS ≥ 1 | 857 | 2546 | 26.6 | 79 | 62.5 | 87.2 | 0.4 | 0.9 | 18 | 35.5 |
Sum | 3222 | 3222 | 100 | 100 | 100 | 100 | 2.3 (f) | 2.5 (f) | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palazzolo, N.; Peres, D.J.; Bordoni, M.; Meisina, C.; Creaco, E.; Cancelliere, A. Improving Spatial Landslide Prediction with 3D Slope Stability Analysis and Genetic Algorithm Optimization: Application to the Oltrepò Pavese. Water 2021, 13, 801. https://doi.org/10.3390/w13060801
Palazzolo N, Peres DJ, Bordoni M, Meisina C, Creaco E, Cancelliere A. Improving Spatial Landslide Prediction with 3D Slope Stability Analysis and Genetic Algorithm Optimization: Application to the Oltrepò Pavese. Water. 2021; 13(6):801. https://doi.org/10.3390/w13060801
Chicago/Turabian StylePalazzolo, Nunziarita, David J. Peres, Massimiliano Bordoni, Claudia Meisina, Enrico Creaco, and Antonino Cancelliere. 2021. "Improving Spatial Landslide Prediction with 3D Slope Stability Analysis and Genetic Algorithm Optimization: Application to the Oltrepò Pavese" Water 13, no. 6: 801. https://doi.org/10.3390/w13060801
APA StylePalazzolo, N., Peres, D. J., Bordoni, M., Meisina, C., Creaco, E., & Cancelliere, A. (2021). Improving Spatial Landslide Prediction with 3D Slope Stability Analysis and Genetic Algorithm Optimization: Application to the Oltrepò Pavese. Water, 13(6), 801. https://doi.org/10.3390/w13060801