Diagnosis and Assessment of Vulnerability Levels for Urban Sewage Pipeline Network System
<p>Flowchart of the research program.</p> "> Figure 2
<p>Vulnerability assessment indicator system for sewerage network systems.</p> "> Figure 3
<p>Scope of the study area.</p> "> Figure 4
<p>Correlation coefficient matrices. Note: positive correlation in red, negative correlation in green.</p> "> Figure 5
<p>Percentage of weights at the normative level. Note: X1–X15 are per capita daily domestic water consumption, natural urban population growth rate, per capita GDP, total annual sewage discharge volume, urbanization rate, centralized urban sewage treatment rate, per capita daily sewage treatment rate, industrial wastewater discharge, the amount invested by industrial enterprises to treat wastewater, the share of environmental pollution control in GDP, pipe length, design flow rate, pipe diameter, slope, and overflow capacity, respectively.</p> ">
Abstract
:1. Introduction
2. Vulnerability Assessment System for Sewerage Network Systems
2.1. The Concept of Vulnerability Evaluation
2.2. Construction of the Indicator Evaluation System
2.2.1. Initial Selection of Indicators
2.2.2. Screening of Indicators
2.3. Evaluation Methodology
3. Results and Discussion
3.1. Regional Overview
3.2. Analysis of Vulnerability Indicators in the Sewage Pipeline Network System
3.2.1. Data Acquisition
3.2.2. Factor Applicability Test
3.2.3. Principal Component Analysis (PCA)
3.3. Vulnerability Assessment of Sewage Pipeline Systems Based on the AHP
3.3.1. Calculation of Comprehensive Vulnerability Evaluation Value for Sewerage Systems
3.3.2. Response of the Sewerage Network System
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Sewerage System Vulnerability Indicator Evaluation Dataset 2011–2022
Indicator Name | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Per capita daily domestic water consumption (X1, L) | 234.34 | 277.11 | 238.14 | 241.04 | 217.04 | 389 | 387 | 381 | 379 | 377 | 350 | 349 |
Natural urban population growth rate (X2, ‰) | 9.32 | 6.64 | 9.01 | 22.5 | 10.04 | 10.52 | 3.57 | 10.72 | 7.14 | 2.36 | 7.24 | 6.19 |
per capita GDP (X3, CNY) | 51,569 | 55,073 | 60,245 | 64,446 | 68,185 | 72,954 | 77,957 | 85,772 | 91,088 | 93,307 | 105,765 | 111,031 |
Total annual sewage discharge volume (X4, ten thousand tons) | 40,492 | 43,708 | 44,104 | 43,433 | 46,493 | 32,550 | 31,794 | 31,140 | 38,437 | 23,335 | 23,522.5 | 25,715.25 |
urbanization rate (X5, %) | 67.24 | 68.45 | 69.83 | 70.86 | 71.56 | 72.29 | 73.32 | 74.23 | 75.16 | 78.08 | 78.64 | 78.92 |
Centralized urban sewage treatment rate (X6, %) | 88.3 | 94.6 | 94.2 | 91 | 92.72 | 93.5 | 99.8 | 71.6 | 91 | 95 | 95.8 | 96.3 |
Per capita daily sewage treatment rate (X7, tons/person-day) | 0.22 | 0.236 | 0.237 | 0.23 | 0.245 | 0.171 | 0.166 | 0.160 | 0.196 | 0.119 | 0.119 | 0.129 |
Industrial wastewater discharge (X8, ten thousand tons) | 9367 | 12909 | 10602 | 8656 | 10,016 | 10,258 | 3861 | 3990 | 3716 | 3715.9 | 3798.8 | 3355.4 |
The amount invested by industrial enterprises to treat wastewater (X9, ten thousand CNY) | 5819.4 | 12,856.3 | 26,872.3 | 21,767.5 | 31,064.9 | 21,221 | 25,331 | 60,886 | 21,253 | 16,004 | 87,187.5 | 43,149.6 |
The share of environmental pollution control in GDP (X10, %) | 0.022 | 0.045 | 0.084 | 0.062 | 0.082 | 0.051 | 0.056 | 0.119 | 0.038 | 0.028 | 0.130 | 0.060 |
Appendix B. Structural Horizontal Vulnerability Dataset for Sewerage Network Systems
Serial Number | Pipe Section Number | Pipe Length (X11, m) | Design Flow rate (X12, L/s) | Pipe Diameter (X13, mm) | Slope (X14, °) | Overflow Capacity (X15, L/s) |
1 | Q6a–Q6b | 423 | 29.46 | 500 | 0.0029 | 39.82 |
2 | Q6b–Q6c | 647 | 91.43 | 500 | 0.0015 | 98.25 |
3 | Q6c–Q6d | 630 | 204.53 | 800 | 0.001 | 209.08 |
4 | Q6d–Q6 | 1053 | 421.88 | 1000 | 0.001 | 444.08 |
5 | Q9a–Q9 | 1727 | 351.55 | 800 | 0.001 | 350.1 |
6 | Q1–2 | 713 | 85.03 | 500 | 0.0032 | 106.8 |
7 | Q2–3 | 1324 | 118.23 | 600 | 0.001 | 130.45 |
8 | Q3–4 | 480 | 192.26 | 800 | 0.0011 | 256.88 |
9 | Q4–5 | 543 | 226.06 | 800 | 0.001 | 244.92 |
10 | Q5–6 | 368 | 243.63 | 800 | 0.001 | 280.94 |
11 | Q6–7 | 565 | 647.79 | 1000 | 0.0012 | 695.36 |
12 | Q7–8 | 372 | 654.68 | 1000 | 0.0012 | 695.36 |
13 | Q8–9 | 595 | 746.47 | 1000 | 0.0015 | 777.44 |
14 | Q9–10 | 508 | 1034.75 | 1200 | 0.0012 | 1130.74 |
15 | Q10–10a | 502 | 1126.63 | 1200 | 0.001 | 1124.24 |
16 | Q10a–10b | 405 | 1187.11 | 1500 | 0.0008 | 1343.26 |
17 | Q10b–10c | 1213 | 1235.32 | 1500 | 0.0008 | 1343.26 |
18 | Q14a–Q14b | 209 | 77.67 | 600 | 0.001 | 80.88 |
19 | Q14b–Q14 | 810 | 140.8 | 600 | 0.001 | 146.87 |
20 | Q11–Q12 | 1050 | 114.89 | 600 | 0.001 | 140.08 |
21 | Q12–Q13 | 347 | 127.56 | 600 | 0.0025 | 206.26 |
22 | Q13–Q14 | 624 | 237.41 | 800 | 0.001 | 244.92 |
23 | Q14–Q15 | 629 | 346.15 | 1000 | 0.001 | 379.09 |
24 | Q15–Q16 | 806 | 459.53 | 1000 | 0.001 | 573.49 |
25 | Q16–Q17 | 825 | 554.85 | 1000 | 0.001 | 573.49 |
26 | Q17–Q17p | 451 | 591.19 | 1200 | 0.001 | 616.44 |
27 | Q18–Q19 | 692 | 653.78 | 1200 | 0.001 | 722.12 |
28 | Q19–Q20 | 700 | 789.93 | 1500 | 0.0008 | 832.8 |
29 | Q20––Q21 | 1338 | 789.93 | 1500 | 0.0008 | 832.8 |
30 | S1–2 | 424 | 156.39 | 600 | 0.0015 | 199.1 |
31 | S2–3 | 303 | 181.07 | 600 | 0.0015 | 199.1 |
32 | S3–4 | 154 | 1104.76 | 1200 | 0.0011 | 1179.11 |
33 | S5–6 | 471 | 1206.66 | 1200 | 0.0013 | 1281.83 |
34 | S6–7 | 295 | 1211.57 | 1200 | 0.0013 | 1281.83 |
35 | S7–8 | 107 | 1223.99 | 1200 | 0.0013 | 1281.83 |
36 | S8–9 | 335 | 1223.99 | 1200 | 0.0013 | 1281.83 |
37 | S10–11 | 240 | 1371.3 | 1500 | 0.0006 | 1578.93 |
38 | S11–12 | 560 | 1395.61 | 1500 | 0.0006 | 1578.93 |
39 | S12–13 | 166 | 1395.61 | 1500 | 0.0006 | 1578.93 |
40 | S13–14 | 225 | 1487.7 | 1500 | 0.0006 | 1578.93 |
41 | S14–15 | 327 | 1511.13 | 1500 | 0.0006 | 1578.93 |
42 | S15–16 | 474 | 1605.59 | 1500 | 0.0007 | 1705.44 |
43 | S16–17 | 159 | 1605.59 | 1500 | 0.0007 | 1705.44 |
44 | S17–18 | 438 | 1738.4 | 1800 | 0.0005 | 2343.8 |
45 | S18–19 | 374 | 1801.71 | 1800 | 0.0005 | 2343.8 |
46 | S19–20 | 373 | 1801.71 | 1800 | 0.0005 | 2343.8 |
47 | S20–21 | 320 | 1830.18 | 1800 | 0.0005 | 2343.8 |
48 | S21–22 | 319 | 1878.26 | 1800 | 0.0005 | 2343.8 |
49 | S22–23 | 373 | 3011.84 | 2000 | 0.0006 | 3400.42 |
50 | S23–24 | 1000 | 3028.53 | 2000 | 0.0006 | 3400.42 |
51 | S25–26 | 308 | 3109.52 | 2000 | 0.0006 | 3400.42 |
52 | S26–27 | 365 | 3123.76 | 2000 | 0.0006 | 3400.42 |
53 | S27–28 | 593 | 3150.4 | 2000 | 0.0006 | 3400.42 |
54 | S28–29 | 863 | 3251.86 | 2000 | 0.0006 | 3400.42 |
55 | S29–30 | 295 | 3340.61 | 2000 | 0.0006 | 3400.42 |
56 | S31–32 | 299.6 | 42.5 | 500 | 0.0012 | 109.51 |
57 | S32–33 | 930 | 134.71 | 600 | 0.0012 | 178.08 |
58 | S33–34 | 837 | 165.63 | 600 | 0.0011 | 170.5 |
59 | S34–30 | 1303.1 | 210.19 | 800 | 0.0009 | 332.14 |
60 | S17-1–S17-2 | 1128 | 188.42 | 600 | 0.0012 | 178.08 |
61 | S17-2–S17-3 | 113 | 226.14 | 600 | 0.002 | 229.9 |
62 | S17-3–S17-4 | 262 | 299.19 | 800 | 0.001 | 350.1 |
63 | S17-4–S17-5 | 346 | 348.71 | 800 | 0.001 | 350.1 |
64 | S17-5–S17 | 275 | 381.5 | 800 | 0.0012 | 383.52 |
References
- Ghavami, S.M.; Borzooei, Z.; Maleki, J. An effective approach for assessing risk of failure in urban sewer pipelines using a combination of GIS and AHP-DEA. Process Saf. Environ. Prot. 2020, 133, 275–285. [Google Scholar] [CrossRef]
- Maw, M.M.; Boontanon, N.; Aung, H.K.Z.Z.; Jindal, R.; Fujii, S.; Visvanathan, C.; Boontanon, S.K. Microplastics in wastewater and sludge from centralized and decentralized wastewater treatment plants: Effects of treatment systems and microplastic characteristics. Chemosphere 2024, 361, 142536. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Li, J. Optimal sensor placement for leak location in water distribution networks: A feature selection method combined with graph signal processing. Water Res. 2023, 242, 120313. [Google Scholar] [CrossRef]
- Xu, J.; Chu, W.; Liu, S.; Wang, S.; Xu, Z. Technical method of evaluation and analysis for key points of improving the quality and efficiency of urban sewage treatment in China. Water Wastewater Eng. 2022, 48, 1–7. [Google Scholar]
- Yin, H.; Zhang, H.; Xu, Z. Review of Intelligent Decision-Making Technologies for Urban Drainage System. J. Tongji Univ. Nat. Sci. 2021, 49, 1426–1434. [Google Scholar]
- Huang, Y.; Li, P.; Li, H.; Zhang, B.; He, Y. To centralize or to decentralize? A systematic framework for optimizing rural wastewater treatment planning. J. Environ. Manag. 2021, 300, 113673. [Google Scholar] [CrossRef] [PubMed]
- Okwori, E.; Viklander, M.; Hedström, A. Performance assessment of Swedish sewer pipe networks using pipe blockage and other associated performance indicators. H2Open J. 2020, 3, 46–57. [Google Scholar] [CrossRef]
- Zeydalinejad, N.; Javadi, A.A.; Webber, J.L. Global perspectives on groundwater infiltration to sewer networks: A threat to urban sustainability. Water Res. 2024, 262, 122098. [Google Scholar] [CrossRef] [PubMed]
- Ananda, J. Assessing the operational efficiency of wastewater services whilst accounting for data uncertainty and service quality: A semi-parametric approach. Water Int. 2020, 45, 921–944. [Google Scholar] [CrossRef]
- Ge, J.; Li, J.; Qiu, R.; Shi, T.; Zhang, C.; Huang, Z.; Yuan, Z. A data-driven method for estimating sewer inflow and infiltration based on temperature and conductivity monitoring. Water Res. 2024, 261, 122002. [Google Scholar] [CrossRef] [PubMed]
- Ba, Z.; Fu, J.; Liang, J.; Liang, K.; Wang, M. Risk Assessment Method of Drainage Network Operation Based on Fuzzy Comprehensive Evaluation Combined with Analytic Network Process. J. Pipeline Syst. Eng. Pract. 2021, 12, 04021009. [Google Scholar] [CrossRef]
- Baah, K.; Dubey, B.; Harvey, R.; McBean, E. A risk-based approach to sanitary sewer pipe asset management. Sci. Total Environ. 2015, 505, 1011–1017. [Google Scholar] [CrossRef]
- Yan, M.; Wang, H.; Liu, Z.; Gong, W.; Dai, X. Establishment and study on the evaluation index system for operational efficiency of urban drainage systems. Chin. J. Environ. Eng. 2023, 17, 3124–3136. [Google Scholar]
- Liu, X.; Guo, W. Dynamic nonlinear effects of urbanization on wastewater discharge based on inertial characteristics of wastewater discharge. Sci. Total Environ. 2023, 904, 166514. [Google Scholar] [CrossRef]
- Shakeri, H.; Motiee, H.; Mcbean, E. Forecasting impacts of climate change on changes of municipal wastewater production in wastewater reuse projects. J. Clean. Prod. 2021, 329, 129790. [Google Scholar] [CrossRef]
- Xu, J.; Xu, Z. China sewage treatment engineering issues assessment. J. Clean. Prod. 2022, 377, 134391. [Google Scholar] [CrossRef]
- Singh, B.J.; Chakraborty, A.; Sehgal, R. A systematic review of industrial wastewater management: Evaluating challenges and enablers. J. Environ. Manag. 2023, 348, 119230. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, G.-H.; Wang, J.; Xu, X.; Shao, Y.; Zhang, Q.; Liu, Y.; Qi, L.; Wang, H. Current status, existent problems, and coping strategy of urban drainage pipeline network in China. Environ. Sci. Pollut. Res. 2021, 28, 43035–43049. [Google Scholar] [CrossRef]
- Dhawale, R.; Schuster-Wallace, C.J.; Pietroniro, A. Assessing the multidimensional nature of flood and drought vulnerability index: A systematic review of literature. Int. J. Disaster Risk Reduct. 2024, 112, 104764. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L. The effects of population aging, life expectancy, unemployment rate, population density, per capita GDP, urbanization on per capita carbon emissions. Sustain. Prod. Consum. 2021, 28, 760–774. [Google Scholar]
- Cheng, Y.; Xu, Z. Fiscal centralization and urban industrial pollution emissions reduction: Evidence from the vertical reform of environmental administrations in China. J. Environ. Manag. 2023, 347, 119212. [Google Scholar] [CrossRef]
- Sinaei, A.; Dziedzic, R.; Creaco, E. Holistic Assessment of Social, Environmental and Economic Impacts of Pipe Breaks: The Case Study of Vancouver. Water 2025, 17, 252. [Google Scholar] [CrossRef]
- Bogdan, P.-L.; Nedeff, V.; Panainte-Lehadus, M.; Chitimuș, D.; Barsan, N.; Nedeff, F.M. Delineation of Groundwater Potential Zones Using Geospatial Techniques. Case Study: Roman City and the Surrounding Area in the Northeastern Region, Romania. Water 2024, 16, 3013. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ismail, A.; Juahir, H.; Iliyasu, A.B.; Wailare, B.T.; Mukhtar, M.; Aminu, H. Water quality modelling using principal component analysis and artificial neural network. Mar. Pollut. Bull. 2023, 187, 114493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, S. Spatial and Temporal Distribution Characteristics of Water Quality in Beiluo River and Pollution Sources Based on Principal Component Analysis. Bull. Soil Water Conserv. 2022, 42, 153–160,171. [Google Scholar]
- Xing, J.; Song, N.; Chen, X. Water Quality Assessment of Heilongjiang Control Section in Songhua River Basin Based on Principal Component Analysis. China Water Wastewater 2021, 37, 89–94. [Google Scholar]
- Anbarasu, S.; Brindha, K.; Elango, L. Multi-influencing factor method for delineation of groundwater potential zones using remote sensing and GIS techniques in the western part of Perambalur district, southern India. Earth Sci. Inform. 2020, 13, 317–332. [Google Scholar] [CrossRef]
- Li, C.; Chen, K.; Bao, Z.; Ng, S.T. Hybrid knowledge and data driven approach for prioritizing sewer sediment cleaning. Autom. Constr. 2024, 165, 105577. [Google Scholar] [CrossRef]
- Luo, Y.; Bao, S.; Yang, S.; Zhang, Y.; Ping, Y.; Lin, C.; Yang, P. Characterization, Spatial Variation and Management Strategy of Sewer Sediments Collected from Combined Sewer System: A Case Study in Longgang District, Shenzhen. Int. J. Environ. Res. Public Health 2021, 18, 7687. [Google Scholar] [CrossRef] [PubMed]
- Jimoh, M.; Abolfathi, S. Modelling pollution transport dynamics and mixing in square manhole overflows. J. Water Process Eng. 2022, 45, 102491. [Google Scholar] [CrossRef]
- Montes, C.; Kapelan, Z.; Saldarriaga, J. Predicting non-deposition sediment transport in sewer pipes using Random forest. Water Res. 2021, 189, 116639. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xu, J.; Jin, W.; Yin, H.; Lin, H. Challenges and opportunities of black and odorous water body in the cities of China. Water Wastewater Eng. 2019, 45, 1–5+77. [Google Scholar]
- Zaharia, C. Decentralized wastewater treatment systems: Efficiency and its estimated impact against onsite natural water pollution status. A Rom. Case Study. Process Saf. Environ. Prot. 2017, 108, 74–88. [Google Scholar] [CrossRef]
- Gao, Y.; Shi, X.; Jin, X.; Wang, X.C.; Jin, P. A critical review of wastewater quality variation and in-sewer processes during conveyance in sewer systems. Water Res. 2023, 228, 119398. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.K.; Bhuiyan, M.; Robert, D.; Roychand, R.; Gao, L.; Cole, I.; Pramanik, B.K. Bio-corrosion in concrete sewer systems: Mechanisms and mitigation strategies. Sci. Total Environ. 2024, 921, 171231. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xu, Z.; Chu, W.; Wang, S.; Xu, Z. Numerical analysis and location method of stormwater inflow in urban sewer network. Water Wastewater Eng. 2023, 49, 150–156. [Google Scholar]
- Beheshti, M.; Saegrov, S. Quantification Assessment of Extraneous Water Infiltration and Inflow by Analysis of the Thermal Behavior of the Sewer Network. Water 2018, 10, 1070. [Google Scholar] [CrossRef]
- Cao, Y.; Jun, W.; Liu, Z.; Zhang, Y.; Kroiss, H.; Daigger, G.; Peng, Y. Four factors need to be considered to improve and upgrade current sewer systems in China:Quantitative analysis. Water Wastewater Eng. 2022, 48, 45–55. [Google Scholar]
- Wang, H.; Yan, M.; Gao, Y.; Wang, Y.; Dai, X. An Evaluation System for Assessing the Operational Efficiency of Urban Combined Sewer Systems Using AHP—Fuzzy Comprehensive Evaluation: A Case Study in Shanghai, China. Water 2023, 15, 3434. [Google Scholar] [CrossRef]
- Balakin, B.V.; Chang, Y.-F.; Øynes, M.; Struchalin, P.G. Plugging of pipes by cohesive particles. Computed tomography investigation and theoretical analysis. Chem. Eng. Sci. 2024, 296, 120214. [Google Scholar] [CrossRef]
- Rensing, P.J.; Liberatore, M.W.; Sum, A.K.; Koh, C.A.; Sloan, E.D. Viscosity and yield stresses of ice slurries formed in water-in-oil emulsions. J. Non-Newton. Fluid Mech. 2011, 166, 859–866. [Google Scholar] [CrossRef]
- Struchalin, P.G.; Balakin, B.V. Blocking dead zones to avoid plugs in pipes. Chem. Eng. Res. Des. 2023, 194, 649–652. [Google Scholar] [CrossRef]
- Nieuwenhuis, E.; Cuppen, E.; Langeveld, J.; de Bruijn, H. Towards the integrated management of urban water systems: Conceptualizing integration and its uncertainties. J. Clean. Prod. 2021, 280, 124977. [Google Scholar] [CrossRef]
- Tsatsou, A.; Frantzeskaki, N.; Malamis, S. Nature-based solutions for circular urban water systems: A scoping literature review and a proposal for urban design and planning. J. Clean. Prod. 2023, 394, 136325. [Google Scholar] [CrossRef]
- Xia, B.; Li, S.; Shen, W.; Mi, M.; Zhuang, Y.; Zhang, L. Sewage leakage challenges urban wastewater management as evidenced by the Yangtze River basin of China. Npj Clean Water 2024, 7, 99. [Google Scholar] [CrossRef]
- Pasciucco, F.; Pecorini, I.; Iannelli, R. Planning the centralization level in wastewater collection and treatment: A review of assessment methods. J. Clean. Prod. 2022, 375, 134092. [Google Scholar] [CrossRef]
- Martínez, D.; Bergillos, S.; Corominas, L.; Comas, J.; Wang, F.; Kooij, R.; Calle, E. Enhancing reclaimed water distribution network resilience with cost-effective meshing. Sci. Total Environ. 2024, 938, 173051. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, X.; Bin, L.; Shen, R. An improved global resilience assessment method for urban drainage systems: A case study of Haidian Island, south China. J. Environ. Manag. 2024, 360, 121135. [Google Scholar] [CrossRef]
- Lei, J.; Fang, H.; Zhu, Y.; Chen, Z.; Wang, X.; Xue, B.; Yang, M.; Wang, N. GPR detection localization of underground structures based on deep learning and reverse time migration. NDT E Int. 2024, 143, 103043. [Google Scholar] [CrossRef]
Number | Indicator Name | Meaning of Indicator | Calculation Formula |
---|---|---|---|
X1 | Per capita daily domestic water consumption (L) | Reflects average water use per person and the capacity of the drainage network to transport wastewater | |
X2 | Natural urban population growth rate (‰) | The ratio of the natural increase in the urban population over a certain period of time to the average number of people over that period, reflecting the development potential of the drainage network | |
X3 | Per capita GDP (CNY) | Reflects the economic strength and standard of living of the region, indicating the level of water use | |
X4 | Total annual sewage discharge volume (ten thousand tons) | Reflects the capacity of the sewerage network to discharge the volume of sewage water | Information obtained from sources |
X5 | Urbanization rate (%) | Reflects the level of development of the area and the scale of construction of the sewerage network | |
X6 | Centralized urban sewage treatment rate (%) | Reflects the status and level of service of the sewerage network in treating sewage | |
X7 | Per capita daily sewage treatment rate (tons/person-day) | Characterizes the relationship between the regional population sewerage capacity and economic development | |
X8 | Industrial wastewater discharge (ten thousand tons) | Reflects the adaptive relationship between urban industrial drainage and economic development | Information obtained from sources |
X9 | The amount invested by industrial enterprises to treat wastewater (ten thousand CNY) | Reflects the level of safe management of the water environment through the ability of industrial enterprises to invest in wastewater | Information obtained from sources |
X10 | The share of environmental pollution control in GDP (%) | Characterizes the level of governmental and social investment in environmental governance | |
X11 | Pipe length (m) | The size of the length of the sewer network reflects the extent of its vulnerability | Information obtained from sources |
X12 | Design flow rate (L/s) | Reflects the capacity of the sewerage network to cope with extreme rainfall and high load conditions | Information obtained from sources |
X13 | Pipe diameter (mm) | Characterizes the strength of the sewer network against compressive and shear stresses at the structural level | Information obtained from sources |
X14 | Slope (°) | Characterizes the requirements of the sewage network in the face of sludge deposition and clogging problems | Information obtained from sources |
X15 | Overflow capacity (L/s) | Characterizes the fluidity of sewage during transportation through the sewage network and pumping stations to prevent particulate deposition | Information obtained from sources |
V-Value Interval | Level | Vulnerability | Meaning of Level |
---|---|---|---|
80 ≤ V < 100 | I | None | The urban sewage network fully meets the demand for drainage, with timely drainage, no blockage, and no leakage, and the development of urban drainage facilities is in line with the development of the city. |
60 ≤ V < 80 | II | Mild | The urban sewage network generally meets the drainage demand, drainage is slightly slow, the network is slightly clogged or leaking, and the development of urban drainage facilities is slightly lagging. |
40 ≤ V < 60 | III | Moderate | The urban sewage network is gradually unable to meet the drainage demand, drainage is slow, the network is clogged with a leakage phenomenon, and the development of urban drainage facilities is lagging. |
20 ≤ V < 40 | IV | Serious | The urban sewerage network is barely able to meet the demand for drainage, which is slow, with frequent blockages and leakages, and the development of urban drainage facilities is lagging. |
0 ≤ V < 20 | V | Extremely serious | Sewage and drainage facilities are ineffective and dysfunctional, with severe sludge clogging of the pipe network and extremely inefficient sewage transportation. |
Number | Basic Attributes and O&M Drivers | Number | Structural Level | ||||
---|---|---|---|---|---|---|---|
Eigenvalue | Contribution Rate % | Cumulative Contribution Rate % | Eigenvalue | Contribution Rate % | Cumulative Contribution Rate % | ||
1 | 5.82 | 58.199 | 58.199 | 1 | 3.422 | 68.441 | 68.441 |
2 | 2.009 | 20.091 | 78.29 | 2 | 1.02 | 20.403 | 88.844 |
3 | 0.894 | 8.94 | 87.23 | 3 | 0.495 | 9.906 | 98.749 |
4 | 0.573 | 5.735 | 92.965 | 4 | 0.057 | 1.142 | 99.892 |
5 | 0.322 | 3.221 | 96.186 | 5 | 0.005 | 0.108 | 100 |
6 | 0.218 | 2.184 | 98.37 | - | - | - | - |
7 | 0.126 | 1.261 | 99.631 | - | - | - | - |
8 | 0.032 | 0.321 | 99.952 | - | - | - | - |
9 | 0.005 | 0.047 | 99.999 | - | - | - | - |
10 | 0 | 0.001 | 100 | - | - | - | - |
Component | Basic Attributes and O&M Drivers | Structural Levels | |||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | |
X1 | 0.33 | −0.16 | −0.36 | - | - |
X2 | −0.20 | 0.41 | −0.13 | - | - |
X3 | 0.39 | 0.02 | 0.10 | - | - |
X4 | −0.39 | 0.10 | 0.06 | - | - |
X5 | 0.39 | −0.02 | 0.12 | - | - |
X6 | 0.01 | −0.45 | 0.77 | - | - |
X7 | −0.40 | 0.09 | 0.07 | - | - |
X8 | −0.37 | 0.01 | 0.20 | - | - |
X9 | 0.28 | 0.48 | 0.30 | - | - |
X10 | 0.14 | 0.60 | 0.31 | - | - |
X11 | - | - | - | −0.14 | 0.93 |
X12 | - | - | - | 0.52 | −0.04 |
X13 | - | - | - | 0.53 | 0.04 |
X14 | - | - | - | −0.39 | −0.37 |
X15 | - | - | - | 0.53 | −0.04 |
Component | Basic Attributes and O&M Drivers | Structural level | |||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | Aggregate Score | PC1 | PC2 | Aggregate Score | |
X1 | 1.94 | −0.32 | −0.32 | 1.04 | - | - | - |
X2 | −1.17 | 0.83 | −0.12 | −0.53 | - | - | - |
X3 | 2.29 | 0.04 | 0.09 | 1.35 | - | - | - |
X4 | −2.26 | 0.2 | 0.05 | −1.27 | - | - | - |
X5 | 2.29 | −0.04 | 0.11 | 1.33 | - | - | - |
X6 | 0.06 | −0.9 | 0.69 | −0.08 | - | - | - |
X7 | −2.31 | 0.18 | 0.05 | −1.3 | - | - | - |
X8 | −2.13 | 0.03 | 0.17 | −1.22 | - | - | - |
X9 | 1.6 | 0.96 | 0.27 | 1.15 | - | - | - |
X10 | 0.84 | 1.21 | 0.28 | 0.76 | - | - | - |
X11 | - | - | - | - | −0.47 | 0.95 | −0.13 |
X12 | - | - | - | - | 1.79 | −0.04 | 1.22 |
X13 | - | - | - | - | 1.81 | 0.03 | 1.25 |
X14 | - | - | - | - | −1.34 | −0.38 | −0.99 |
X15 | - | - | - | - | 1.81 | −0.04 | 1.23 |
Criterion Layer | Indicator Number | Maximum Eigenvalue | Eigenvector | Consistency Check |
---|---|---|---|---|
Basic Attributes | X1 | 5.068 | 0.493 | 0.015 < 0.1 |
X2 | 0.312 | |||
X3 | 2.081 | |||
X4 | 0.805 | |||
X5 | 1.309 | |||
O&M Drivers | X6 | 5.439 | 0.162 | 0.098 < 0.1 |
X7 | 2.038 | |||
X8 | 1.372 | |||
X9 | 0.639 | |||
X10 | 0.789 | |||
Structural Level | X11 | 5.244 | 0.18 | 0.054 < 0.1 |
X12 | 1.044 | |||
X13 | 2.042 | |||
X14 | 0.483 | |||
X15 | 1.252 |
Criterion Layer | Indicator Layer | Scoring Scope | Indicator Weight (in Tenths) | Indicator Scoring | Weighted Score | ||||
---|---|---|---|---|---|---|---|---|---|
0–2 | 2–4 | 4–6 | 6–8 | 8–10 | |||||
Basic Attributes | X1 | >600 | 500–600 | 300–500 | 100–300 | <100 | 0.99 | 5.83 | 5.75 |
X2 | >13 | 13–11 | 11–9 | 9–7 | <7 | 0.62 | 6.33 | 3.95 | |
X3 | <2 | 2–4 | 4–8 | 8–14 | >14 | 4.16 | 5.83 | 24.28 | |
X4 | >50,000 | 30,000–50,000 | 20,000–30,000 | 10,000–20,000 | <10,000 | 1.61 | 3.50 | 5.64 | |
X5 | <60 | >85 | 60–70 | 70–75 | 75–85 | 2.62 | 7.17 | 18.76 | |
O&M Drivers | X6 | <60 | 60–80 | 80–90 | 90–95 | >95 | 0.32 | 8.00 | 2.60 |
X7 | <0.05 | 0.05–0.1 | 0.1–0.2 | 0.2–0.4 | >0.4 | 4.08 | 6.83 | 27.85 | |
X8 | >20,000 | 15,000–20,000 | 8000–15,000 | 3000–8000 | <3000 | 2.75 | 7.00 | 19.22 | |
X9 | <10,000 | 10,000–30,000 | 30,000–50,000 | 50,000–70,000 | >70,000 | 1.28 | 5.00 | 6.39 | |
X10 | <0.01 | 0.01–0.02 | 0.02–0.05 | 0.05–0.08 | >0.08 | 1.58 | 8.00 | 12.62 | |
Structural Level | X11 | >1500 | 1000–1500 | 500–1000 | 300–500 | <300 | 0.36 | 7.22 | 2.59 |
X12 | <300 | 300–500 | 500–1000 | 1000–1500 | >1500 | 2.09 | 5.66 | 11.81 | |
X13 | <200 | 200–500 | 500–1000 | 1000–1500 | >1500 | 4.08 | 8.25 | 33.69 | |
X14 | <0.0001 | 0.0001–0.0002 | 0.0002–0.0003 | 0.0003–0.0005 | >0.0005 | 0.97 | 9.84 | 9.51 | |
X15 | <200 | 200–500 | 500–1000 | 1000–1500 | >1500 | 2.50 | 6.22 | 15.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Xu, W.; Wang, T.; Sun, J.; Jiang, C.; Zhu, K. Diagnosis and Assessment of Vulnerability Levels for Urban Sewage Pipeline Network System. Water 2025, 17, 549. https://doi.org/10.3390/w17040549
Yin X, Xu W, Wang T, Sun J, Jiang C, Zhu K. Diagnosis and Assessment of Vulnerability Levels for Urban Sewage Pipeline Network System. Water. 2025; 17(4):549. https://doi.org/10.3390/w17040549
Chicago/Turabian StyleYin, Xiaobin, Wenbin Xu, Teng Wang, Jiale Sun, Chunbo Jiang, and Kai Zhu. 2025. "Diagnosis and Assessment of Vulnerability Levels for Urban Sewage Pipeline Network System" Water 17, no. 4: 549. https://doi.org/10.3390/w17040549
APA StyleYin, X., Xu, W., Wang, T., Sun, J., Jiang, C., & Zhu, K. (2025). Diagnosis and Assessment of Vulnerability Levels for Urban Sewage Pipeline Network System. Water, 17(4), 549. https://doi.org/10.3390/w17040549