Enhanced Transport Induced by Tropical Cyclone and River Discharge in Hangzhou Bay
<p>Bathymetry (m) of the Yellow Sea and East China Sea (<b>a</b>) and Hangzhou Bay and its adjacent seas (<b>b</b>). The bathymetry data are from the ETOPO Global 1-min dataset. The red circles in (<b>b</b>) represent the tide gauges used to validate the model results in <a href="#water-17-00164-f002" class="html-fig">Figure 2</a>.</p> "> Figure 2
<p>Sea surface elevation (m) of the model simulation (blue curves) and the observational data from tidal gauges (black dots) in Hangzhou Bay. The stations S1 to S4 are marked in <a href="#water-17-00164-f001" class="html-fig">Figure 1</a>b.</p> "> Figure 3
<p>Wind speed at 10 m above sea surface (<b>a</b>–<b>e</b>), precipitation rate (<b>f</b>–<b>j</b>), and air temperature at 2 m above sea surface (<b>k</b>–<b>o</b>) during the Severe Tropical Storm Ampil passing Hangzhou Bay. All the data are from the CFSR hourly dataset.</p> "> Figure 4
<p>Temperature (colors, °C) and velocity (vectors) in Hangzhou Bay and the Changjiang Estuary before the Tropical Storm Ampil (<b>a</b>–<b>d</b>) and during the storm (<b>e</b>–<b>h</b>). The red triangle is the center of the storm on day 0, and the black line represents the track of the storm.</p> "> Figure 5
<p>Locations of the particles simulated by the model released in the surface layer before the Tropical Storm Ampil (noTC, (<b>a</b>–<b>d</b>)) and during the storm (TC, (<b>e</b>–<b>h</b>)) in the CONTROL case. The panels from left to right show the particles released after 5 days, 10 days, 20 days, and 30 days.</p> "> Figure 6
<p>Locations of the particles simulated by the model released in the bottom layer before the Tropical Storm Ampil (noTC, (<b>a</b>–<b>d</b>)) and during the storm (TC, (<b>e</b>–<b>h</b>)) in the CONTROL case. The panels from left to right show the particles released after 5 days, 10 days, 20 days, and 30 days.</p> "> Figure 7
<p>Accumulated number of particles in the surface layer from the releasing time to after 5 days (<b>a</b>), 10 days (<b>b</b>), 20 days (<b>c</b>), and 30 days (<b>d</b>) in Hangzhou Bay in the noTC experiment of the CONTROL case.</p> "> Figure 8
<p>Accumulated number of particles in the surface layer from the releasing time to after 5 days (<b>a</b>), 10 days (<b>b</b>), 20 days (<b>c</b>), and 30 days (<b>d</b>) in Hangzhou Bay in the TC experiment of the CONTROL case.</p> "> Figure 9
<p>Accumulated number of particles in the bottom layer from the releasing time to after 5 days (<b>a</b>), 10 days (<b>b</b>), 20 days (<b>c</b>), and 30 days (<b>d</b>) in Hangzhou Bay in the noTC experiment of the CONTROL case.</p> "> Figure 10
<p>Accumulated number of particles in the bottom layer from the releasing time to after 5 days (<b>a</b>), 10 days (<b>b</b>), 20 days (<b>c</b>), and 30 days (<b>d</b>) in Hangzhou Bay in the TC experiment of the CONTROL case.</p> "> Figure 11
<p>Number of particles inside Hangzhou Bay after release.</p> "> Figure 12
<p>Accumulated number of particles in the surface layer from the releasing time to after 5 days (<b>a</b>), 10 days (<b>b</b>), 20 days (<b>c</b>), and 30 days (<b>d</b>) in Hangzhou Bay in the TC experiment of the NO-RIVER case.</p> "> Figure 13
<p>Accumulated number of particles in the bottom layer from the releasing time to after 5 days (<b>a</b>), 10 days (<b>b</b>), 20 days (<b>c</b>), and 30 days (<b>d</b>) in Hangzhou Bay in the TC experiment of the NO-RIVER case.</p> ">
Abstract
:1. Introduction
2. Model and Data
2.1. Model Setup
2.2. Data
3. Results
3.1. The Severe Tropical Storm Ampil
3.2. Basic Circulation and Typhoon-Influenced Flow in Hangzhou Bay
3.3. Tracer Transport Influenced by the Storm
3.4. Influence of Discharge of Changjiang and Qiantang Rivers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Zhu, J. Suspended sediment dynamics and influencing factors during typhoons in Hangzhou Bay, China. Anthr. Coasts 2023, 6, 3. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, S. Spatial variability and representation of seabed sediment grain sizes: An example from the Zhoushan-Jinshanwei transect, Hangzhou Bay, China. Chin. Sci. Bull. 2004, 49, 2503–2507. [Google Scholar] [CrossRef]
- Su, J.L.; Wang, K.S. Changjiang river plume and suspended sediment transport in Hangzhou Bay. Cont. Shelf Res. 1989, 9, 93–111. [Google Scholar]
- Chen, J.Y.; Liu, C.Z.; Zhang, C.L.; Walker, H.J. Geomorphological development and sedimentation in Qiantang estuary and Hangzhou Bay. J. Coast. Res. 1990, 6, 559–572. [Google Scholar]
- Han, Z.C.; Dai, Z.H.; Li, G.B. Regulation and Exploitation of Qiantang Estuary [in Chinese]; China Water Power Press: Beijing, China, 2003. [Google Scholar]
- Xie, D.; Pan, C.; Wu, X.; Gao, S.; Wang, Z. The variations of sediment transport patterns in the outer Changjiang Estuary and Hangzhou Bay over the last 30 years. J. Geophys. Res. Oceans 2017, 122, 2999–3020. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, C.; Xiao, C.; Zhu, J. Change of the discharge and sediment flux to estuary in Changjiang River. In Health of The Yellow Sea; Hong, G.H., Zhang, J., Park, B.K., Eds.; Earth Love Publ. Assoc.: Seoul, Republic of Korea, 1998; pp. 129–148. [Google Scholar]
- Chang, P.-H.; Isobe, A. A numerical study on the Changjiang diluted water in the Yellow and East China Seas. J. Geophys. Res. 2003, 108, 3299. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Liu, Q.; Yao, Y.; Li, Y.; Wu, X.; Wang, C.; Yu, W.; Wang, T. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 2017, 607, 920–932. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Saito, Y.; Milliman, J.D.; Xu, K.; Qiao, S.; Shi, G. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resour. Res. 2006, 42, W04407. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, X.; Chen, S.; Jia, J.; Cai, T. Morphological evolution of Jinshan trough in Hangzhou Bay (China) from 1960 to 2011. Estuar. Coast. Shelf Sci. 2017, 198, 367–377. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, L.; Li, D. Microplastic in three urban estuaries. China. Environ. Pollut. 2015, 206, 597–604. [Google Scholar] [CrossRef]
- Xue, H.C. Deposition character of Changjiang estuary in the past 100 years. In 17th Symposium on Coastal Engineering; China Ocean Engineering Society, Ed.; China Ocean Press: Beijing, China, 1995; pp. 786–802. [Google Scholar]
- Liu, S.; Liu, Y.; Yang, G.; Qiao, S.; Li, C.; Zhu, Z.; Shi, X. Distribution of major and trace elements in surface sediments of Hangzhou Bay in China. Acta Oceanol. Sin. 2012, 31, 89–100. [Google Scholar] [CrossRef]
- Du, P.; Ding, P.; Hu, K. Simulation of three-dimensional cohesive sediment transport in Hangzhou Bay, China. Acta Oceanol. Sin. 2010, 29, 98–106. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, Y.; He, X.; Wu, H.; Bai, R.; Li, T.; Zhu, B.; Gong, F. Assessing the effect of strong wind events on the transport of particulate organic carbon in the Changjiang River estuary over the last 40 years. Remote Sens. Environ. 2023, 288, 113477. [Google Scholar] [CrossRef]
- Li, L.; He, Z.; Xia, Y.; Dou, X. Dynamics of sediment transport and stratification in Changjiang River Estuary, China. Estuar. Coast. Shelf Sci. 2018, 213, 1–17. [Google Scholar] [CrossRef]
- Li, L.; Shen, F.; He, Z.; Yu, Z. Suspended sediment dynamics in macrotidal turbid Hangzhou Bay during Typhoon Chan-hom. Front. Earth Sci. 2022, 10, 932149. [Google Scholar] [CrossRef]
- Li, L.; Xu, J.; Ren, Y.; Wang, X.; Xia, Y. Effects of wave-current interactions on sediment dynamics in Hangzhou Bay during Typhoon Mitag. Front. Earth Sci. 2022, 10, 931472. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, J.; Li, A.; Ma, X. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: In-situ seafloor observations. Mar. Geol. 2018, 406, 72–83. [Google Scholar] [CrossRef]
- Bian, C.; Jiang, W.; Song, D. Terrigenous transportation to the Okinawa Trough and the influence of typhoons on suspended sediment concentration. Cont. Shelf Res. 2010, 30, 1189–1199. [Google Scholar] [CrossRef]
- Gong, W.; Shen, J. Response of sediment dynamics in the York River Estuary, USA to tropical cyclone Isabel of 2003. Estuar. Coast. Shelf Sci. 2009, 84, 61–74. [Google Scholar] [CrossRef]
- Palinkas, C.M.; Halka, J.P.; Li, M.; Sanford, L.P.; Cheng, P. Sediment deposition from tropical storms in the upper Chesapeake Bay: Field observations and model simulations. Cont. Shelf Res. 2014, 86, 6–16. [Google Scholar] [CrossRef]
- Xie, X.; Li, M.; Ni, W. Roles of wind-driven currents and surface waves in sediment resuspension and transport during a tropical storm. J. Geophys. Res. Oceans 2018, 123, 8638–8654. [Google Scholar] [CrossRef]
- Liu, X.; Kuang, C.; Huang S, S.; Dong, W. Modelling morphodynamic responses of a natural embayed beach to Typhoon Lekima encountering different tide types. Anthr. Coasts 2022, 5, 4. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, Y.; Cheng, W.; Zhang, H.; Gong, W. Wave effects on sediment transport and entrapment in a channel-shoal estuary: The Pearl River estuary in the dry winter season. J. Geophys. Res. Oceans 2021, 126, e2020JC016905. [Google Scholar] [CrossRef]
- Feng, X.; Li, M.; Yin, B.; Yang, D.; Yang, H. Study of storm surge trends in typhoon-prone coastal areas based on observations and surge-wave coupled simulations. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 272–278. [Google Scholar] [CrossRef]
- Wu, R.H.; Li, C.Y. Upper ocean response to the passage of two sequential typhoons. Deep-Sea Res. I 2018, 132, 68–79. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res. 2003, 108, 3090. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean. Modell. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Warner, J.C.; Sherwood, C.R.; Arango, H.G.; Signell, R.P. Performance of four turbulence closure models implemented using a generic length scale method. Ocean. Modell. 2005, 8, 81–113. [Google Scholar] [CrossRef]
- Liu, X.; Chen, D.; Dong, C.; He, H. Variation of the Kuroshio intrusion pathways northeast of Taiwan using the Lagrangian method. Sci. China Earth Sci. 2016, 59, 268–280. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.P.; Su, J.; Chen, D.; Lian, T.; Dong, C.; Liu, T. On the vorticity balance over steep slopes: Kuroshio intrusions northeast of Taiwan. J. Phys. Oceanogr. 2020, 50, 2089–2104. [Google Scholar] [CrossRef]
- Wu, R.; Wu, S.; Chen, T.; Yang, Q.; Han, B.; Zhang, H. Effects of Wave–Current Interaction on the Eastern China Coastal Waters during Super Typhoon Lekima (2019). J. Phys. Oceanogr. 2021, 51, 1611–1636. [Google Scholar] [CrossRef]
- Liu, R.; Wang, T.; Li, J.; Liu, X.; Zhu, Q. Simulation of seasonal transport of microplastics and influencing factors in the China Seas based on the ROMS model. Water Res. 2023, 244, 120493. [Google Scholar] [CrossRef] [PubMed]
- Penven, P.; Marchesiello, P.; Debreu, L.; Lefevre, J. Software tools for pre- and post-processing of oceanic regional simulations. Environ. Modell. Softw. 2008, 23, 660–662. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Egbert, G.D.; Bennett, A.F.; Foreman, M.G.G. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. 1994, 99, 24821–24852. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP Climate Forecast System version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Styles, R.; Glenn, S.M. Modeling stratified wave and current bottom boundary layers on the continental shelf. J. Geophys. Res. 2000, 105, 24119–24139. [Google Scholar] [CrossRef]
- Mitarai, S.; Riley, J.; Kosály, G. A Lagrangian study of scalar diffusion in isotropic turbulence with chemical reaction. Phys Fluids 2003, 15, 3856–3866. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, N. Hydrological Survey Report on the Hangzhou Bay Crossing of the Tong-Su-Jia-Yong Railway, Hangzhou; Zhejiang Institute of River and Marine Surveying and Mapping: Hangzhou, China, 2019; 295p. [Google Scholar]
- Li, X.; Yang, J.; Han, G.; Ren, L.; Zheng, G.; Chen, P.; Zhang, H. Tropical Cyclone Wind Field Reconstruction and Validation Using Measurements from SFMR and SMAP Radiometer. Remote Sens. 2022, 14, 3929. [Google Scholar] [CrossRef]
Name | River Discharge | Modeling Period |
---|---|---|
CONTROL/noTC | Changjiang/Qiantang Rivers | 20 June to 20 July 2018 |
CONTROL/TC | Changjiang/Qiantang Rivers | 20 July to 19 August 2018 (Ampil passing) |
NO-RIVER/noTC | No river input | 20 June to 20 July 2018 |
NO-RIVER/TC | No river input | 20 July to 19 August 2018 (Ampil passing) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Liu, X. Enhanced Transport Induced by Tropical Cyclone and River Discharge in Hangzhou Bay. Water 2025, 17, 164. https://doi.org/10.3390/w17020164
Zhou H, Liu X. Enhanced Transport Induced by Tropical Cyclone and River Discharge in Hangzhou Bay. Water. 2025; 17(2):164. https://doi.org/10.3390/w17020164
Chicago/Turabian StyleZhou, Hongquan, and Xiaohui Liu. 2025. "Enhanced Transport Induced by Tropical Cyclone and River Discharge in Hangzhou Bay" Water 17, no. 2: 164. https://doi.org/10.3390/w17020164
APA StyleZhou, H., & Liu, X. (2025). Enhanced Transport Induced by Tropical Cyclone and River Discharge in Hangzhou Bay. Water, 17(2), 164. https://doi.org/10.3390/w17020164