Interdisciplinary Research for the Delimitation of Catchment Areas of Large Deep Karstic Aquifers: Origin of the Thermal Springs of Alhama de Aragón and Jaraba (Spain)
<p>Location map of the study area. (<b>B</b>) Areas of maximum accumulation of Palaeogene and Neogene sediments in the Duero Basin (according to [<a href="#B14-water-16-03303" class="html-bibr">14</a>]) and location of the Almazán Basin (CA), Aragonese Branch (RA), and Castellana Branch (RC) of the Cordillera Iberian. (<b>A</b>) Geological scheme of the Almazán Basin (Modified from [<a href="#B15-water-16-03303" class="html-bibr">15</a>,<a href="#B16-water-16-03303" class="html-bibr">16</a>]), and location of the main groups of springs: (1) thermal, more than 30 °C, (2) semithermal, between 20 and 30 °C and (3) those with temperatures above between 4 °C and 8 °C above the average temperature of the sources in the area, which is about 11 °C (4) Watershed between the Ebro Basin and the Duero and Tajo basins; (5) Iberian Massif; (6) Pyrenees; (7) Betic Cordillera; (8) Palaeogene and Neogene Basin; (9) Iberian Range and Catalan-Coastal Range.</p> "> Figure 2
<p>Geological diagram of the study area with indication of the extension of the Jurassic below the Cenozoic, detail of the Paleogene stratigraphy and location of the karstification processes in the Cretaceous. 1. Precambrian and Paleozoic: quartzites and shales. 2. Lower and Middle Triassic: sandstones of the Buntsandstein facies and dolomites and marls of the Muchelcalk facies. 3. Upper Triassic: clays and gypsum of the Keuper facies. 4. Lower Jurassic: Dolomites. 5. Middle and Upper Jurassic: limestones and marls. 6. Cretaceous: Utrillas facies sands below. Upper limestones and marls. 7. Palaeogene of the Northern Zone (adapted from Huerta 2007). (7.1. Ocino Fm., 7.2. Almazul Fm., 7.3. Gomara Fm., 7.4. Gomara Fm., 7.5. Peroniel Fm., 7.6. Fm., 7.7. Bordalba Fm., 7.8. Deza Fm., 7.9. Valdehurtado Fm., 7.10. El Raido, 7.11. Alparrache Fm.). 8. Neogene: shales, siltstones, conglomerates. 9. Jurassic boundary below the Cenozoic. 10. Traces of pre-Palaeogene karstification at the Cretaceous-Palaeogene and Neogene rocks contact (according to [<a href="#B19-water-16-03303" class="html-bibr">19</a>]). 11. Traces of karstification due to the circulation of thermal and semi-thermal waters at the Cretaceous-Palaeogene and Neogene rocks contact (according to [<a href="#B6-water-16-03303" class="html-bibr">6</a>]). 12. Water divide between the Duero–Ebro. 13. Water divide between the Ebro-Tajo. 14. Overview of signs of karstification at the Cretaceous-Palaeogene and Neogene rocks contact.</p> "> Figure 3
<p><b>Hydrogeological diagram of the study area. Geological features description:</b> 1. Precambrian and Palaeozoic: quartzites and shales. 2. Lower and Middle Triassic: sandstones of the Buntsandstein facies and dolomites and marls of the Muchelcalk facies. 3. Upper Triassic: clays and gypsum of the Keuper facies. 4. Lower Jurassic: Carniolas (dolomites with small cavities) and dolomites. 5. Middle and Upper Jurassic: limestones and marls. 6. Cretaceous: Utrillas facies sands below. Upper limestones and marls. 7. Paleogene of the Northern Zone (adapted from [<a href="#B16-water-16-03303" class="html-bibr">16</a>]). 8. Neogene: shales, siltstones, conglomerate. 9. Jurassic boundary under the Cenozoic. <b>Hydrographical and hydrogeological features description</b>: 10. Water divide between the Duero–Ebro. 11. Water divide between the Ebro–Tajo. 12. Group of thermal springs (12.1. Jaraba. 12.2. Alhama de Aragón). 13. Group of semi-thermal springs (13.1. Embid de Ariza. 13.2. San Roquillo. 13.3. Deza. 13.4. Almazul). 14. Important cold springs in the Sierra del Solorio (14.1. Mochales. 14.2. Iruecha. 14.3. Chaorna. 14.4. Sagides. 14.5. Urex. 14.6. Layna. 14.7. Ambrona. 14.8. Esteras de Medinaceli or source of the river Jalón). 15. Poljes of the Rituerto river. 16. Flow lines in the Sierra del Solorio. 17. Sinkholes in the Mesa river. 18. Ground water contour and surface flow lines in the Tertiary of the Almazan Basin. <b>Detail</b> (<b>A</b>). Detailed location of springs in the Almazul area associated with the Palaeogene and Cretaceous (geological base taken from [<a href="#B16-water-16-03303" class="html-bibr">16</a>]). <b>Detail</b> (<b>B</b>). Detail of the location of the group of springs in the Cretaceous calcareous aquifer in Deza and San Roquillo, differentiating between deep flow (orange) and shallow flow (blue) (geological base taken from [<a href="#B16-water-16-03303" class="html-bibr">16</a>]). <b>Detail</b> (<b>C</b>). Detail of the situation of the group of thermal springs (red) and boreholes of the Cretaceous–calcareous and Palaeogene and Neogene aquifer (T) in Alhama de Aragón. <b>Detail</b> (<b>D</b>). Detail of the situation of the group of thermal springs (red), cold springs (blue), and boreholes of the Cretaceous–calcareous and Palaeogene and Neogene aquifer in Jaraba area.</p> "> Figure 4
<p>Schematic hydrogeological cross-section along the bottom of the Almazán Basin showing the hydrogeological divide established in the mathematical model for the Cretaceous-Thermal aquifer. 1. Palaeogene and Neogene sediments of the Almazán Basin. 2. Edges of the Almazán Basin (mainly carbonate aquifer). 3. Topographic contour lines. 4. Depth of the top of the Cretaceous-thermal aquifer. 5. Water table. 6. Duero–Ebro surface divide. 7. Duero–Ebro hydrogeological divide, verified at the edges and assumed in the interior of the basin. 8. Duero–Ebro hydrogeological divide, maximum assumed position. 9. Springs. 10. Flow lines. 11. Hydrogeological cut (the power of the Cretaceous-thermal calcareous aquifer is exaggerated).</p> "> Figure 5
<p>Comparison of tritium values of groundwater samples with those of annual precipitation in Zaragoza and Madrid, belonging to the REVIP period 1953–2018 in semi-logarithmic scale. (A. Precipitation in Madrid. B. Precipitation in Zaragoza. C. Deza springs. D. San Roquillo springs. E. Springs of Alhama de Aragón. F. Jaraba spring).</p> "> Figure 6
<p>Result of piezometric levels after the calibration of the numerical model [<a href="#B2-water-16-03303" class="html-bibr">2</a>].</p> "> Figure 7
<p>Evolution of the tritium content of precipitation in Madrid and in the springs of the Alhama de Aragón thermal aquifer (A. Precipitation in Madrid. B. Precipitation in Zaragoza. C. Deza springs. D. San Roquillo springs. E. Embid de Ariza. F. Springs of Alhama de Aragón. G. Jaraba spring (own data and from [<a href="#B8-water-16-03303" class="html-bibr">8</a>,<a href="#B11-water-16-03303" class="html-bibr">11</a>,<a href="#B47-water-16-03303" class="html-bibr">47</a>,<a href="#B48-water-16-03303" class="html-bibr">48</a>]).</p> "> Figure 8
<p>Piper diagram of the chemical composition of the waters of the springs of the thermal system. (A. Alhama de Aragón springs. B. Jaraba springs. C. Embid de Ariza spring. D. San Roquillo springs. E. Deza springs F. Cold springs). (own data and from [<a href="#B8-water-16-03303" class="html-bibr">8</a>,<a href="#B11-water-16-03303" class="html-bibr">11</a>,<a href="#B47-water-16-03303" class="html-bibr">47</a>]).</p> "> Figure 9
<p>(<b>Left</b>): Relationship between <sup>18</sup>O values and their chloride content in the springs (in mg/L) of the Alhama de Aragón thermal aquifer. (<b>Right</b>): Increase in mineralisation of the springs (TDI) according to the regional flow.</p> ">
Abstract
:1. Introduction and Objectives
2. Geological and Hydrogeological Description of the Study Area
2.1. Geographical Location, Hydrography and Climate
2.2. Geological Features
2.3. Hydrogeological Features
3. Methods
3.1. Study on the Palaeogene Rocks Karstification of the Hydrothermal Aquifer
3.2. Study on the Space Attributes of the Hydrothermal Aquifer and Application of the Bounded Plane Representation Technique
3.3. Study on Hydrothermal System Domain Boundaries
3.4. Carrying Out an Nventory of Water Points
3.5. Isotopic Hydrochemical Studies
4. Results and Discussion
4.1. Palaeogene and Neogene Hydrogeological Features
4.1.1. Aquitards Identifications
4.1.2. Two Palaeogene and Neogene Flows: Shallow and Deep
- Surface flow: Figure 3 presents a schematic Palaeogene and Neogene rock water table contour map based on 420 water points and rivers/streams flowing with water. The qualitative interpretation of this map indicates that: 1. The water table contour is quite adapted to the topography, with the water level of the boreholes close to the surface, which is typical for low-permeability soils. The impermeability of the geological formations of the basins of the Nágima, Santa Cristina, and Jalón rivers, for example, has been known for a long time and this has limited human supply by means of wells [40,41]. 2. Also, as a consequence of the above, the Duero–Jalón surface and underground divides coincide at surface level in most of the study area, except for the divide with the Rituerto river. 3. The rivers and streams of the Jalón Basin drain, but the discharge is not continuous and diffuse, and rather occurs through small, occasional springs, which are associated with more permeable levels within the Tertiary, either Neogene or Palaeogene. Some of these springs are located near the watershed. Most of the rivers do not discharge significant groundwater; this can be seen very well in the dry season when a large part of the riverbeds run dry, such as the Jalón and the Nágima during times of droughts.
- Deep flow: The Rituerto river and its tributary, the Arroyo de la Vega in the Duero Basin, have the behaviour of losing rivers, even though they flow through Palaeogene and Neogene sediments. Despite having a large catchment area (more than 600 km2), it is usual to see them dry most of the year (hence the historical name of Rituerto river, for example, which refers to a half-dry river). This is because the Palaeogene and Neogene sediments are not very thick here and the Cretaceous-calcareous aquifer is close to the surface, sometimes outcropping, and this absorbs the recharge. All this has led to the formation of two large karstic depressions or poljes filled with Neogene and Quaternary sediments: the Rituerto polje and the Cañada Hermosa karstic depression [31]. This Cretaceous proximity to the surface has been geometrized in detail by means of different geophysical techniques in the work of [35].
4.2. Hydrogeological Features of Thermal Aquifer
4.3. Hydrochemical Features
4.3.1. Isotope Hydrochemical Features
- Groundwater age
Springs | 1981 (1) | 1982 (2) | 1992 (3) | 1993 (1) | 2000 (4) | 2021 (5) |
---|---|---|---|---|---|---|
Deza springs | ||||||
Suso spring | 7.2 + 0.13 8.1 + 1.0 | 4.12 + 0.12 | 1.57 + 0.29 | |||
El Hocino spring | 8.0 + 0.13 7.4 + 1 | |||||
San Roquillo | ||||||
San Roquillo spring | 1.23 + 0.5 | 3.72 + 0.19 | 1.25 + 0.28 | |||
Embid de Ariza | ||||||
Embid de Ariza gallery | 0.74 + 1.37 | |||||
Lavadero | 2.9 + 1.2 | 3.3 + 0.9 3.2 + 0.11 | 1.99 + 0.16 | 0.57 + 0.27 | ||
Alhama springs | ||||||
El Chorrillo (termas san Roque) | 5.8 + 1.6 | 1.28 + 0.15 | 0.63 + 0.28 | |||
San Roque (B. Cantarero) | 6.0 + 2.0 | |||||
Gallery (termas Pallares) | 0.6 + 1 (1) | 6.7 + 1.4 | ||||
Los Baños spring (B. Guajardo) | 3.2 + 2.0 | |||||
Termal lack | 0.2 + 1 | 5.9 + 1.6 | ||||
Baños del Rey | 8.4 + 1.6 | |||||
Jaraba springs | ||||||
Virgen de las Nieves spring | 10.7 + 1.4 | |||||
San Vicente spring (B. Sicilia) | 0.0 + 1.1 | 5.4 + 1.8 | ||||
San Luis spring (B. de Serón) | 0.0 + 2.3 | 1.9 + 2.0 | ||||
San Antonio spring | 0.0 + 1.1 | 3.3 + 1.4 | ||||
San Roque/Sta Dorotea (b. de seron) | 0.0 + 1 | 3.8 + 2.0 | ||||
El Prado spring (B. de Serón) | 0.0 + 2.4 | 10.0 + 1.4 | ||||
Sondeo “Cañar 2” | 6.6 + 1.4 |
- Evolution of tritium content over time
- -
- The shape of the tritium content curve of all the springs is a smoothing of the rainfall curve and shifted in time. In all cases, the upward curve is steeper than the downward curve, with a gentler slope, and is similar in shape to that of the rainfall. We can see how the decreasing trend is maintained with a similar slope in all cases, i.e., they are sub-parallel.
- -
- Curves values are higher in the springs with more modern waters and progressively decrease in those with older waters (Deza/San Roquillo-Embid-Alhama/Jaraba) according to the underground flow, but in all cases, there is a certain mixture of post-1952 waters from 1982 onward. Indeed, it can be seen that in 1982, the thermal springs of Alhama and Jaraba were not influenced by water from after 1952, nor by the recharge of nearby outcrops, since their values are below 0.5 TU. It is from 1985 onward when the mixture of water infiltrated after 1952 begins to be noticed, but the values are still very low. In Embid, it would probably be a little earlier, around 1979, if a curve with the same function as that of Jaraba and Alhama were to be drawn. In Deza and San Roquillo, it would also be earlier, around 1975, if it were using the same procedure. There is a maximum tritium content in the Embid, Jaraba, and Alhama springs around 1992, displaced with respect to the maximum tritium content of the rains by 32–33 years. All this leads us to think that we are dealing with the same aquifer system whose recharge is far away, which has a large reservoir of old water, and that the recharge of young water has not been mixed to any great extent with the former because it is drained by the Deza and San Roquillo springs, purifying the system and causing long, deep, and old flows to reach Alhama.
- -
- The thermal springs of Jaraba and Alhama de Aragón share the same or similar temperature, chemical composition, and geological contact of emergence. Their tritium isotopic composition and their evolution over time are practically the same, as shown in Figure 7. Its D and 18O isotopic composition is also very similar. All this shows that there is a hydrogeological parallelism and the same origin between both springs: As can be seen in the ground water contour map (Figure 6), both springs share the same recharge area of similar altitude and constitute the end of flow tubes of similar length and flow rate.
4.3.2. Information Provided by Deuterium and Oxygen18
4.3.3. Hydrochemical Characteristic
4.3.4. Origin of the Springs
- Recharge in the Sierra del Solorio is overwhelmingly from Jurassic rather than Cretaceous carbonate outcrops, which is where all the thermal and semi-thermal springs are located. More than 95% of the recharge area of the Solorio mountain is formed by outcrops of Jurassic carbonate materials, and the rest by carbonates of the Upper Cretaceous aquifer and which are on the border with the Palaeogene and Neogene Tertiary rocks of the Almazán Basin.
- The Jurassic carbonate aquifer is conserved almost in a natural regime and its hydraulic balance has been established quite clearly in previous works [7,26], so there is no surplus water to justify the large thermal flows of Alhama, Jaraba, and the rest of the springs, which add up to some 1200 L/s.
- Even assuming large errors in the calculation of the balance of the Solorio mountain from these earlier studies, it must be admitted that the water recharged mainly in the Jurassic should somehow be transferred to the Upper Cretaceous limestones above. But as seen above, the Jurassic does not exist beneath most of the hydrothermal aquifer (Figure 3) except for a narrow strip of 5 km north of the border of the Castellana Branch with the Palaeogene and Neogene Tertiary, disappearing from Jaraba onward. This aquifer is therefore quite far from the springs of Alhama, Embid, San Roquillo, and Deza, making such a transfer practically impossible. And even if it could be achieved in the aforementioned strip, it would first have to cross some 200 m of poorly permeable lithology separating the two groups (sands and marls from the base of the Cretaceous). To solve this question, one would then have to resort to the supposed hydraulic connection between the two aquifers, which could be provided by hypothetical fault jumps, and/or to the flow mostly concentrated through these faults [6,8]. In Hernández Pacheco’s work, great importance is given to the circulation through faults as the origin of the springs, such as the Alhama fault(s), but in the simulations carried out specifically in this mathematical model, the faults do not justify large circulation flows.
- It is simpler and more logical for the water to be recharged in the Cretaceous aquifer itself, especially in the Rituerto Basin, where it was not known until now where the recharged water went, nor had any hydraulic balance been established. And that it then circulated through the deep zone or hot spot on the border of the Aragonese branch with the Almazán Basin and emerged without changing aquifer. Note that the thermal and semi-thermal springs are all on the border with the Aragonese branch, not in the Castilian branch, which is the deep, hot zone.
- If the flow was from the Sierra del Solorio toward Jaraba and Alhama, it would be logical that the flow would be concentrated at the lowest point (Alhama) and not in five springs that are 30–40 km apart. Furthermore, there is no hydraulic gradient that would justify the water reaching areas so far away from Deza or San Roquillo (elevations of approximately 900 m), as the underground discharges in the Sierra del Solorio are also located at around 900 m.
- The higher temperatures of the Jaraba and Alhama springs are not justified, as the flow does not pass through the deeper areas of the aquifer. It would be the other way round, as for the flow to reach Deza and the rest of the springs, the flow lines would have to pass through deeper areas. The deep wells that reach the Cretaceous on the edge of the Castilian branch are not thermal water wells, unlike some located in the Aragonese branch.
- Nor are the values of groundwater age obtained from tritium for Alhama/Jaraba justified because the flow distances from the centre of gravity of the Sierra del Solorio to these springs (about 25 km) are not so large as to result in ages above 60 years, as occurs in our model with flow lines of 70 km. Neither does it explain the order of the increasing age of Deza-San Roquillo-Embid-Alhama/Jaraba; it would have to be the opposite, as the length of the flow lines increases toward Deza. Furthermore, if the flow first passed through Jaraba and ended in Alhama [8], the age of the latter spring would be greater, and yet its age and evolution is totally parallel to that of Jaraba. To validate these results, contaminant particles were monitored using the flow model to obtain ages of the same order of magnitude as those obtained using the tritium data. In this way, the hydrochemical aspects acquire all their value when connected to the results of flow modelling.
4.3.5. The Alhama-Jaraba Thermal System in the Context of Thermal Karst Aquifers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldscheider, N.; Brechenmacher, J.; Hötzl, H.; Neukum, C. Vulnerability and Risk Mapping for the Protection of Carbonate (Karst) Aquifers. In Informe Final de la Acción COST 620, eUR 20912, Cap. Applications: Engen, Swabian Alb, Germany; European Commission, Directorate General for Research: Luxembourg, 2004. [Google Scholar]
- Sanz de Ojeda, J.; Elorza, F.J.; Sanz, E. Flow numerical modelling in thermal karst systems. The case of the springs of Alhama de Aragón and Jaraba (In Revision). Water 2024, 16, 3240. [Google Scholar] [CrossRef]
- Anderson, M.P. Heat as a ground water tracer. Groundwater 2005, 43, 951–968. [Google Scholar] [CrossRef] [PubMed]
- Wagner, V.; Li, T.; Bayer, P.; Leven, C.; Dietrich, P.; Blum, P. Thermal tracer testing in a sedimentary aquifer: Field experiment (Lauswiesen, Germany) and numerical simulation. Hydrogeol. J. 2014, 1, 175–187. [Google Scholar] [CrossRef]
- Pasvanoğlu, S.; Çelik, M. Hydrogeochemical characteristics and conceptual model of Çamlıdere low temperature geothermal prospect, northern Central Anatolia. Geothermics 2019, 79, 82–104. [Google Scholar] [CrossRef]
- Hernández-Pacheco de la Cuesta, F. Estudio hidrogeológico de las termas de Alhama de Aragón (Zaragoza). In Anales de Real Academia de Farmacia; 1954; pp. 309–332. [Google Scholar]
- SGOP. Estudio Hidrogeológico de la Provincia de Soria, Informe Interno (Inédito); Diputación General de Aragón; 1990. [Google Scholar]
- ITGE-DGA (Diputación General de Aragón). Estudio de las Aguas Mineromedicinales, Minero-Industriales, Termales y de Bebida Envasadas en la Comunidad Autónoma de Aragón; Informe Inédito; IGME: Madrid, Spain, 1994; 1500p. [Google Scholar]
- Tena Calvo, J.M.; Sanz, L.F.A.; Serrano, M.J.G.; Collado, J.M.M.; de Leyva, A. Evolución Físicoquímica y Geotermométría del Sistema hidrotermal de Alhama—Jaraba (provincia de Zaragoza); Institución “Fernando el Católico”: Zaragoza, Spain, 1995; 178p. [Google Scholar]
- Sánchez Navarro, J.A.; Coloma, P.; Maestro, A. Methodology for the study of unexploited aquifer, with thermal waters: Application of the aquifer Alhama de Aragón hot springs. Ground Water 2000, 38, 324–325. [Google Scholar]
- Sanz, E.; Yelamos, J.G. Methodology for the study of unexploited aquifers with thermal waters: Application to the aquifer of the Alhama de Aragón Hot Spring. Ground Water 1998, 6, 913–923. [Google Scholar] [CrossRef]
- Coloma, P.; Sánchez Navarro, J.A.; Baquer, E. Relación entre la macroestructura del sector oriental de la Cuenca de Almazán y la ubicación de los manantiales termales de Deza, Embid, San Roquillo, Alhama y Jaraba (provincias de Soria y Zaragoza). Geogaceta 1999, 25, 71–74. Available online: http://hdl.handle.net/10272/10192 (accessed on 1 September 2024).
- Yélamos, J.G.; Pérez, E.S. Hidrogeología regional del acuífero cretácico de los manantiales termales de Alhama de Aragón (Zaragoza y Soria). Rev. Soc. Geol. Esp. 1998, 11, 151–167. [Google Scholar]
- Alonso-Gavilán, G.; Armenteros, I.; Carballeira, J.; Corrochano, A.; Huerta, P.; Rodríguez, J.M. Cuenca del Duero. In En: Geología de España; Vera, J.A., Ed.; SGE-IGME: Madrid, Spain, 2004; pp. 548–555. [Google Scholar]
- Rey Moral, M.C. Estudio Geofísico de Una Cuenca Sedimentaria. Ph.D. Thesis, Instituto Geológico y Minero de España, Madrid, Spain, 2003; 215p. [Google Scholar]
- Huerta, P. El Paleógeno de la Cuenca de Almazán. Relleno de una Cuenca Piggyback. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2007. [Google Scholar]
- Sáenz Ridruejo, C. Las escorrentías. In En Historia de Soria; C.E.S.(C.S.I.C.): Soria, Spain, 1985; pp. 29–31. [Google Scholar]
- CHE (Confederación Hidrográfica del Ebro). Plan hidrológico del Río Jalón, Version 1.0.; Marzo: Zaragoza, Spain, 2007. [Google Scholar]
- Armenteros, I. Alteración del sustrato y encostramiento carbonáticos ligados a la discontinuidad Cretácico-Terciaria en el borde este del Sistema Ibérico. Stvdia Geol. Salmant. 1989, 5, 13–54. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6740325 (accessed on 1 September 2024).
- Maestro, A. Estructura y Evolución Alpina de la Cuenca de Almazán (Cordillera Ibérica). Ph.D. Thesis, Ediciones de la Exma, Diputación Provincial de Soria, Soria, Spain, 2004; Nº 48, 410p. Available online: https://bibliotecadigital.dipsoria.es/storage/2022/03/ESTRUCTURA-Y-EVOLUCION-ALPINA-DE-LA-CUENCA-DE-ALMAZAN.pdf (accessed on 1 September 2024).
- CHE (Confederación Hidrográfica del Ebro). Inventario de Puntos de Agua Hidrogeológicos; CHE: Zaragoza, Spain, 2023; Available online: https://www.chebro.es/inventario-de-puntos-de-agua (accessed on 1 September 2024).
- Esnaola, J.M.; Martin Fernández, M. Mapa Geológico de España 1: 50.000, Hoja 351 (Olvega); IGME: Madrid, Spain, 1973. [Google Scholar]
- I.T.G.E. (Instituto Tecnológico Geominero de España). Informe Hidrogeológico del Subsistema Sierra del Solorio (Sistema acuífero nº 57). (Inédito); Instituto Tecnológico Geominero de España: Madrid, Spain, 1980. [Google Scholar]
- I.T.G.E. (Instituto Tecnológico Geominero de España). Los Recursos Subterráneos de los Sistemas Acuíferos de la Margen Derecha del Ebro. Sistemas 57, 58 y 59. Plan PIAS. (Inédito); Instituto Tecnológico Geominero de España: Madrid, Spain, 1981. [Google Scholar]
- IGME. Estudio de Detalle del Borde Septentrional de la Sierra de Solorio (Sistema Acuífero 57) (Internal Report); IGME: Madrid, Spain, 1987; Available online: https://www.igme.es/ (accessed on 1 September 2024).
- De Toledo, F.O.; Arqued, V. Estudio de los Recursos Hidraúlicos Subterráneos de los Acuíferos Relacionados con la Provincia de Zaragoza; Unidad Hidrogeológica 43; 09.803.183/0411; MOPU: Sierra del Solorio, Spain, 1990. [Google Scholar]
- Santos, P.; José, J. Hidrogeología del Sistema Kárstico de La Fuentona de Muriel (Soria). Ph.D. Thesis, E.T.S.I. Caminos, Canales y Puertos (UPM), Madrid, Spain, 2007. [Google Scholar] [CrossRef]
- Espinoza, T.; Carolina, L. Hidrogeología del Sistema Acuífero de los Manantiales de Gormaz. Ph.D. Thesis, E.T.S.I. Caminos, Canales y Puertos (UPM), Madrid, Spain, 2011. [Google Scholar] [CrossRef]
- Rodríguez García, J.A. Geomorfología de un Sector de la Cuenca de Almazán (Soria): Procesos de Erosión de Suelos y Planteamiento de Escenarios ante el Cambio Climático. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2008; 390p. [Google Scholar]
- Sanz, E. El karst del sur y oeste del Moncayo. Bol. Geol. Min. 1986, 97, 194–213. [Google Scholar]
- Echeverría, M.T. La depresión kárstica de Cañada Hermosa. Rasgos geomorfológicos. Actas II Reun. Cuatern. Ibér. 1989, 1, 81–86. [Google Scholar]
- Sancho Ruiz, E. El Sistema de Poljes de Noviercas, Borobia y Cuevas de Agreda-Beratón (Cordillera Ibérica, Soria): Cartografía Geomorfológica y Materiales para la Divulgación. Master’s Thesis, Departamento de Geografía y Ordenación del Territorio Facultad de Filosofía y Letras, Universidad de Zaragoza, Zaragoza, Spain, 2019. [Google Scholar]
- Gracia, F.J.; Gutiérrez Santolalla, F.; Gutierrez-Elorza, M. Los poljes de la región de Layna (Cordillera Ibérica noroccidental). Cuatern. Geomorfol. 1996, 10, 33–45. [Google Scholar]
- Casas-Sainz, A.M.; Cortes-Gracia, A.L.; Maestro-González, A. Intraplate deformation and basin formation during the Tertiary within the northern Iberian plate-Origin and evolution of the Almazan Basin. Tectonics 2000, 19, 258–289. [Google Scholar] [CrossRef]
- JCL (Junta de Castilla y León). Ampliación de la Investigación Hidrogeológico-Estructural Realizada en el Campo de Gómara (Soria); Informe Interno; 1991. [Google Scholar]
- Sanz, E.; Sanz de Ojeda, J.; Rosas, P. Hidrogeología del sistema Kárstico de la Sierra de Hinodejo (Cordillera Ibérica, España). Geogaceta 2022, 72, 7–10. [Google Scholar] [CrossRef]
- CHD (Confederación Hidrográfica del Duero). Inventario de Puntos de Agua Hidrogeológicos; CHD: Segovia, Spain, 2023; Available online: https://www.chduero.es/ (accessed on 1 September 2024).
- Custodio, E.; Llamas, M.R. Hidrología Subterránea; Ediciones Omega: Barcelona, Spain, 1975. [Google Scholar]
- IGME. Investigación Hidrogeológica Básica del Sistema nº88 (10 bis), Terciario del Sureste de Soria, Cuenca del Duero; Colección Informe; IGME: Madrid, Spain, 1983; 64p. [Google Scholar]
- Manuel de, C.; Mendizabal, J. ; Instituto Geológico y Minero de España. Estudio de la Cuenca Hidrologica del río Nagima; Notas y Comunicaciones del IGME: Madrid, Spain, 1941. [Google Scholar]
- S.G.O.P. Estudio Hidrogeológico en la Cuenca del rio Nágima, Afluente del Jalón. (Inédito); S.G.O.P.: Metro Manila, Philippines, 1984. [Google Scholar]
- Bond, J. Tectono-Sedimentary Evolution of the Almazfin Basin, NE Spain, in Tertiary Basins of Spain: The Stratigraphic Record of Cristal Kinematics; Friend, P.F., Dabrio, C.J., Eds.; Cambridge University Press: New York, NY, USA, 1996; pp. 203–213. [Google Scholar]
- Lendinez, A.; Martin Herrero, D. Mapa Geológico de España 1: 50.000, hoja 436 (Alhama de Aragón); ITGE: Madrid, Spain, 1991. [Google Scholar]
- Plata, A. Composición isotópica de las precipitaciones y aguas subterráneas de la Península Ibérica; Centro de Estudios y Experimentación de Obras Públicas: Madrid, Spain, 1994; 139p. [Google Scholar]
- Plata, A. Presente y futuro del tritio natural como herramienta de investigación hidrológica. Ing. Civ. 2006, 143, 1–15. [Google Scholar]
- Díaz, M.F.; Rodríguez, J.; Castaño, S. La Red Española de Vigilancia de Isótopos en la Precipitación (REVIP): Distribución isotópica espacial y aportación al conocimiento del ciclo hidrológico. Ing. Civ. 2009, 155, 87–97. [Google Scholar]
- IGME. Estudio de las Manifestaciones Termales Extremadura, Salamanca, Aragón y Rioja, Orientados a su Posible Explotación como Recursos Geotérmicos. Memoria. Tomo II; IGME: Madrid, Spain, 1985. (In Spanish) [Google Scholar]
- Menéndez-Pidal, I.; Sanz Pérez, E. Seguimiento Isotópico en el sistema hidrotermal de Alhama de Aragón (Zaragoza-Soria). In Proceedings of the 3ª Asamblea Hispano-Portuguesa de Geodesia y Geofísica, Instituto Geográfico Nacional, Valencia, Spain, 4–8 February 2002; Volume 3, pp. 1712–1715, ISSN/ISBN: 84-9705-364-8. [Google Scholar]
- Andre, L.; Franceschi, M.; Pouchan, P.; Atteia, O. Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. J. Hydrol. 2005, 305, 40–62. [Google Scholar] [CrossRef]
- Sanz Pérez, E.; Sanz, J. Fluoride concentration in drinkingwater in the province of Soria (Central Spain) and caries in children. Environ. Geochem. Health 1999, 21, 133–140. [Google Scholar] [CrossRef]
- Dublyansky, Y.V. Speleogenetic history of the Hungarian hydrothermal karst. Environ. Geol. 1995, 25, 24–35. [Google Scholar] [CrossRef]
- Erőss, A.; Csoma, É.A.; Mádl-Szőnyi, J. The effects of mixedhydrothermal and meteoric fluids on karst reservoir development, Buda Thermal Karst, Hungary. In Karst from Recent to Reservoirs; Sasowsky, I.D., Feazel, C.T., Mylorie, J.E., Palmer, A.N., Palmer, M.V., Eds.; Karst Waters Institute, Special Publication: Leesburg, VA, USA, 2008; Volume 14, pp. 57–63. [Google Scholar]
- Ufrecht, W. Hydrogeologie des Stuttgarter Mineralwassersystems [Hydrogeology of the Mineral Water System of Stuttgart]; Schriftenreihe des Amtes für Umweltschutz; Landeshauptstadt Stuttgart: Stuttgart, Germany, 2006; pp. 1–151. Available online: https://www.researchgate.net/publication/306503852 (accessed on 1 September 2024).
- Käss, W.; Käss, H. Deutsches Bäderbuch [German Spa Book], 2nd ed.; Schweizerbart: Stuttgart, Germany, 2008. [Google Scholar]
- Muralt, R.; Vuataz, F.D.; Schonborn, G.; Sommaruga, A.; Jenny, J. Integration of hydrochemical, geological and geophysical methods for the exploration of a new thermal water resource: Case of Yverdon-les-Bains, foot of the Jura range. Eclogae Geol. Helv. 1997, 90, 179–197. [Google Scholar]
- Levet, S.; Toutain, J.P.; Munoz, M.; Berger, G.; Negrel, P.; Jendrzejewski, N.; Agrinier, P.; Sortino, F. Geochemistry of the Bagneresde-Bigorre thermal waters from the North Pyrenean Zone (France). Geofluids 2002, 2, 25–40. [Google Scholar] [CrossRef]
- Goldscheider, N.; Madl-Sznyi, J.; Erss, A.; Schill, E. Review: Thermal water resources in carbonate rock aquifers. Hydrogeol. J. 2010, 18, 1303–1318. [Google Scholar] [CrossRef]
- Tóth, J. A theory of groundwater motion in small drainage basins in central Alberta, Canada. J. Geophys. Res. 1962, 67, 4375–4387. [Google Scholar] [CrossRef]
- Tóth, J. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res. 1963, 68, 4795–4812. [Google Scholar] [CrossRef]
- Tóth, J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeol. J. 1999, 7, 1–14. [Google Scholar] [CrossRef]
- Tóth, J. Hydraulic continuity in large sedimentary basins. Hydrogeol. J. 1995, 3, 4–16. [Google Scholar] [CrossRef]
- Frumkin, A.; Gvirtzman, H. Cross-formational rising groundwater at an artesian karstic basin: The Ayalon Saline Anomaly, Israel. J. Hydrol. 2006, 318, 316–333. [Google Scholar] [CrossRef]
- Klimchouk, A.B. Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective; Special Paper No. 1; National Cave and Karst Research Institute: Carlsbad, NM, USA, 2007; Available online: https://digitalcommons.usf.edu/kip_monographs/13/ (accessed on 1 September 2024).
- Worthington, S.R.H.; Ford, D.C. High sulfate concentrations in limestone springs: An important factor in conduit initiation? Environ. Geol. 1995, 25, 9–15. [Google Scholar] [CrossRef]
- Gunn, J.; Bottrell, S.H.; Lowe, D.J.; Worthington, S.R.H. Deep groundwater flow and geochemical processes in limestone aquifers: Evidence from thermal waters in Derbyshire, England, UK. Hydrogeol. J. 2006, 14, 868–881. [Google Scholar] [CrossRef]
- Tóth, J. Springs seen and interpreted in the context of groundwater flow-systems. In Proceedings of the GSA Annual Meeting, Portland, OR, USA, 18–21 October 2009. [Google Scholar]
- Bjorlykke, K. Fluid-flow in sedimentary basins. Sediment. Geol. 1993, 86, 137–158. [Google Scholar] [CrossRef]
- Palmer, A.N. Geochemical models for the origin of macroscopic solution porosity in carbonate rocks. In Unconformities and Porosity in Carbonate Strata; AAPG Memoir, Budd, A.D., Saller, A.H., Harris, P.M., Eds.; AAPG: Tulsa, OK, USA, 1995; Volume 63, pp. 77–101. Available online: https://archives.datapages.com/data/specpubs/memoir63/chapt04/0077.htm (accessed on 1 September 2024).
- Smosna, R.; Bruner, K.R.; Riley, R.A. Paleokarst and reservoir porosity in the Ordovician Beekmantown Dolomite of the central Appalachian basin. Carbonates Evaporites 2005, 20, 50–63. [Google Scholar] [CrossRef]
- Ford, D.C. Paleokarst as a target for modern karstification. Carbonates Evaporites 1995, 10, 138–147. [Google Scholar] [CrossRef]
Lithological Group | Number of Pumping Tests | Specific Flow Rate qe(L/s/m) | Transmissivity T (m2/day) T = 100 qe | Permeability K = T/b (m/day) |
---|---|---|---|---|
Aluvial deposits | 17 | 1.47 | 147 | 30 |
Miocene period | 23 | 0.082 | 8.2 | 0.1 |
Paleogene period (Fm.Gomara) | 1 | 0.105 | 10.5 | 0.06 |
Paleogene period (Fm. Ocino) | 1 | 0.2 | 20 | 0.5 |
Cretaceous | 9 | 8.3 | 830 | 6–11.8 |
Jurassic (Lias) | 8 | 0.56 | 54 | 1.14 |
Muchelkalk | 1 | 0.012 | 1.2 | 0.024 |
Springs | 1981 (1) | 1982 (2) | 1993 (2) | 2000 | ||
---|---|---|---|---|---|---|
δ18O 0/00 | δ2H | δ18O 0/00 | δ18O 0/00 | δ18O 0/00 | ||
Spring | Summer | Spring | ||||
Mal de Alhama (Termas Pallarés) | −62 | −8.71 | −8.74 | −8.68 | ||
Mal de Alhama de A. (El Lago) | −60 | |||||
Embid de Ariza (galería) | −59 | −8.74 | −8.73 | −8.46 | −8.58 | |
San Roquillo | −8.91 | −9.03 | −8.48 | −8.73 | ||
Mal de Suso (Deza) | −9.03 | −9.02 | −8.54 | −8.86 | ||
Mal de Ocino (Deza) | −8.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz De Ojeda, J.; Elorza, F.J.; Sanz, E. Interdisciplinary Research for the Delimitation of Catchment Areas of Large Deep Karstic Aquifers: Origin of the Thermal Springs of Alhama de Aragón and Jaraba (Spain). Water 2024, 16, 3303. https://doi.org/10.3390/w16223303
Sanz De Ojeda J, Elorza FJ, Sanz E. Interdisciplinary Research for the Delimitation of Catchment Areas of Large Deep Karstic Aquifers: Origin of the Thermal Springs of Alhama de Aragón and Jaraba (Spain). Water. 2024; 16(22):3303. https://doi.org/10.3390/w16223303
Chicago/Turabian StyleSanz De Ojeda, Joaquín, Francisco Javier Elorza, and Eugenio Sanz. 2024. "Interdisciplinary Research for the Delimitation of Catchment Areas of Large Deep Karstic Aquifers: Origin of the Thermal Springs of Alhama de Aragón and Jaraba (Spain)" Water 16, no. 22: 3303. https://doi.org/10.3390/w16223303
APA StyleSanz De Ojeda, J., Elorza, F. J., & Sanz, E. (2024). Interdisciplinary Research for the Delimitation of Catchment Areas of Large Deep Karstic Aquifers: Origin of the Thermal Springs of Alhama de Aragón and Jaraba (Spain). Water, 16(22), 3303. https://doi.org/10.3390/w16223303