Smart Monitoring Method for Land-Based Sources of Marine Outfalls Based on an Improved YOLOv8 Model
<p>Zhanjiang city outlets point map. (<b>a</b>) “gully”, (<b>b</b>) “weir”, (<b>c</b>) “pipe”, (<b>d</b>) “culvert”, (<b>e</b>) “gully”, (<b>f</b>) “weir”, (<b>g</b>) “pipe”, (<b>h</b>) “culvert”.</p> "> Figure 2
<p>YOLOv8 model structure.</p> "> Figure 3
<p>MSDA mechanism structure. The red points represent the key positions of the convolutional kernel, the yellow area shows the dilation of the kernel at <math display="inline"><semantics> <mrow> <mi mathvariant="normal">r</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, the blue area shows the dilation at <math display="inline"><semantics> <mrow> <mi mathvariant="normal">r</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, and the green area shows the dilation at <math display="inline"><semantics> <mrow> <mi mathvariant="normal">r</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>C2f module structure.</p> "> Figure 5
<p>DSConv selectable receptive fields. The blue line represents the continuous shift of the convolutional kernel in the horizontal direction, while the red line represents the continuous shift of the convolutional kernel in the vertical direction.</p> "> Figure 6
<p>Inner-MPDIoU diagram.</p> "> Figure 7
<p>(<b>a</b>) Anchor box category number statistics, (<b>b</b>) Anchor box position statistics. The color of Anchor box in (<b>b</b>) belongs to the same category as that in (<b>a</b>).</p> "> Figure 8
<p>(<b>a</b>) Normalized confusion matrices for YOLOv8 model, (<b>b</b>) normalized confusion matrices for YOLOv8+MSDA model.</p> "> Figure 9
<p>(<b>a</b>) YOLOv8 model’s predicted results, (<b>b</b>) our model’s predicted results.</p> "> Figure 10
<p>(<b>a</b>) P–R curve of the improved model, (<b>b</b>) P–R curve of the improved model after transfer learning.</p> "> Figure 11
<p>Model training process.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Set
2.2. Methods and Model Establishment
2.2.1. YOLOv8 Model
2.2.2. Multi-Scale Dilated Attention
2.2.3. Dynamic Snake Convolution
2.2.4. Inner-MPDIoU
3. Results Analysis and Discussion
3.1. Parameter Selection
3.2. Evaluation Metrics
3.3. Baseline Model
3.4. Ablation Experiment
3.5. Comparison Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lincoln, S.; Chowdhury, P.; Posen, P.E.; Robin, R.S.; Ramachandran, P.; Ajith, N.; Harrod, O.; Hoehn, D.; Harrod, R.; Townhill, B.L. Interaction of climate change and marine pollution in Southern India: Implications for coastal zone management practices and policies. Sci. Total Environ. 2023, 902, 19. [Google Scholar] [CrossRef]
- Liang, H.R.; Zhang, J.X.; Zhang, J.B.; Zhang, P.; Deng, X.; Chen, J.Y.; Wang, Z.L.; Long, C.; Lu, C.Q.; Wang, D.; et al. Unveiling the eutrophication crisis: 20 years of nutrient development in Zhanjiang Bay, China. Front. Mar. Sci. 2024, 11, 16. [Google Scholar] [CrossRef]
- Yuan, B.; Cui, Y.H.; An, D.; Jia, Z.X.; Ding, W.Y.; Yang, L. Marine environmental pollution and offshore aquaculture structure: Evidence from China. Front. Mar. Sci. 2023, 9, 15. [Google Scholar] [CrossRef]
- Ma, J.T.; Wu, Z.J.; Guo, M.Q.; Hu, Q.G. Dynamic relationship between marine fisheries economic development, environmental protection and fisheries technological Progress-A case of coastal provinces in China. Ocean Coast. Manag. 2024, 247, 13. [Google Scholar] [CrossRef]
- Qian, X.L. Research on the coordinated development model of marine ecological environment protection and economic sustainable development. J. Sea Res. 2023, 193, 10. [Google Scholar] [CrossRef]
- Ma, J.W.; Ma, R.F.; Pan, Q.; Liang, X.J.; Wang, J.Q.; Ni, X.X. A Global Review of Progress in Remote Sensing and Monitoring of Marine Pollution. Water 2023, 15, 3491. [Google Scholar] [CrossRef]
- Szopinska, M.; Luczkiewicz, A.; Jankowska, K.; Fudala-Ksiazek, S.; Potapowicz, J.; Kalinowska, A.; Bialik, R.J.; Chmiel, S.; Polkowska, Z. First evaluation of wastewater discharge influence on marine water contamination in the vicinity of Arctowski Station (Maritime Antarctica). Sci. Total Environ. 2021, 789, 10. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, X.; Wu, X.; Wang, J.; Wang, X.; Liang, W. Research progress on occurrence characteristics and source analysis of microfibers in the marine environment. Mar. Pollut. Bull. 2024, 198, 115834. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Galgani, F.; Neal, W.J. Addressing the global challenge of coastal sewage pollution. Mar. Pollut. Bull. 2024, 201, 4. [Google Scholar] [CrossRef]
- Ahmad, F.; Morris, K.; Law, G.T.W.; Taylor, K.G.; Shaw, S. Fate of radium on the discharge of oil and gas produced water to the marine environment. Chemosphere 2021, 273, 11. [Google Scholar] [CrossRef]
- Paliaga, P.; Felja, I.; Budiša, A.; Ivančić, I. The impact of a fish cannery wastewater discharge on the bacterial community structure and sanitary conditions of marine coastal sediments. Water 2019, 11, 2566. [Google Scholar] [CrossRef]
- Magnuson, J.T.; Sydnes, M.O.; Ræder, E.M.; Schlenk, D.; Pampanin, D.M. Transcriptomic profiles of brains in juvenile Atlantic cod (Gadus morhua) exposed to pharmaceuticals and personal care products from a wastewater treatment plant discharge. Sci. Total Environ. 2024, 912, 169110. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, H.; Su, Z.; Lu, W.; Ma, B. Impact of marine aquaculture wastewater discharge on microbial diversity in coastal waters. Reg. Stud. Mar. Sci. 2022, 56, 102702. [Google Scholar] [CrossRef]
- Lenzi, M.; Leporatti Persiano, M.; Ciarapica, M.; D’Agostino, A. Use of Zeolite (Chabazite) Supplemented with Effective Microorganisms for Wastewater Mitigation of a Marine Fish Farm. Sustainability 2024, 16, 1353. [Google Scholar] [CrossRef]
- Alamgir, A.; Khan, M.A.; Fatima, N.; Fatima, S.U. Impact of domestic and industrial effluent on marine environment at Karachi Port Trust (KPT) coastal area, Pakistan. Environ. Monit. Assess. 2023, 195, 1308. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, S.; Gao, X.; Gu, Y.; Yu, Y.; Li, M.; Chen, X.; Fan, M.; Jia, Y.; Tian, L. Typical emerging contaminants in sewage treatment plant effluent, and related watersheds in the Pearl River Basin: Ecological risks and source identification. J. Hazard. Mater. 2024, 476, 135046. [Google Scholar] [CrossRef]
- Conde Molina, D.; Di Gregorio, V. Enhancing biodegradation of vegetable oil-contaminated soil with soybean texturized waste, spent mushroom substrate, and stabilized poultry litter in microcosm systems. World J. Microbiol. Biotechnol. 2024, 40, 237. [Google Scholar] [CrossRef]
- Yi, S.; Song, Z.; Lin, J.; Liu, W.; Li, B. Distribution, sources and influencing factors of heavy metals in the Ledong Sea, South China Sea. Mar. Pollut. Bull. 2024, 202, 116396. [Google Scholar] [CrossRef]
- Ameen, F.; Alsarraf, M.J.; Abalkhail, T.; Stephenson, S.L. Tannery effluent treatments with mangrove fungi, grass root biomass, and biochar. World J. Microbiol. Biotechnol. 2024, 40, 249. [Google Scholar] [CrossRef]
- Liu, B.-J.; Ou, X.-M.; Ye, K.-M.; Wei, N.; Lu, Y.; Sun, K.-F. Occurrence and Risk Assessment of Microplastics in the Coastal Seawater of Guangdong Province. Huan Jing Ke Xue= Huanjing Kexue 2024, 45, 3911–3918. [Google Scholar]
- Wu, G.; Zhu, F.; Zhang, X.; Ren, H.; Wang, Y.; Geng, J.; Liu, H. PBT assessment of chemicals detected in effluent of wastewater treatment plants by suspected screening analysis. Environ. Res. 2023, 237, 116892. [Google Scholar] [CrossRef] [PubMed]
- Markert, N.; Guhl, B.; Feld, C.K. Linking wastewater treatment plant effluents to water quality and hydrology: Effects of multiple stressors on fish communities. Water Res. 2024, 260, 121914. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Wang, S.; Sun, L.; Gao, Y. A Study of the Marine Environment Monitoring Technology. J. Coast. Res. 2020, 107, 189–192. [Google Scholar] [CrossRef]
- Xu, J.; Pan, X.; Jia, B.; Wu, X.; Liu, P.; Li, B. Oil spill detection using LBP feature and K-means clustering in shipborne radar image. J. Mar. Sci. Eng. 2021, 9, 65. [Google Scholar] [CrossRef]
- Doney, S.C.; Wolfe, W.H.; McKee, D.C.; Fuhrman, J.G. The science, engineering, and validation of marine carbon dioxide removal and storage. Annu. Rev. Mar. Sci. 2024. [Google Scholar] [CrossRef]
- Ciappa, A.C. Marine plastic litter detection offshore Hawai’i by Sentinel-2. Mar. Pollut. Bull. 2021, 168, 112457. [Google Scholar] [CrossRef]
- Harringmeyer, J.P.; Kaiser, K.; Thompson, D.R.; Gierach, M.M.; Cash, C.L.; Fichot, C.G. Detection and sourcing of CDOM in urban coastal waters with UV-visible imaging spectroscopy. Front. Environ. Sci. 2021, 9, 647966. [Google Scholar] [CrossRef]
- Gancheva, I.; Peneva, E.; Slabakova, V. Detecting the surface signature of riverine and effluent plumes along the bulgarian black sea coast using satellite data. Remote. Sens. 2021, 13, 4094. [Google Scholar] [CrossRef]
- Mamidisetti, H.; Vijay, R. Dynamics of sewage outfall plumes based on Landsat-8-derived sea surface salinity and tidal characteristics. Environ. Sci. Pollut. Res. 2023, 30, 82311–82325. [Google Scholar] [CrossRef] [PubMed]
- Faria, B.; Mendes, R.; Lopes, C.L.; Picado, A.; Sousa, M.; Dias, J.M. Insights for sea outfall turbid plume monitoring with high-spatial-resolution satellite imagery application in Portugal. Remote. Sens. 2023, 15, 3368. [Google Scholar] [CrossRef]
- Joshi, P.; Sandhu, K.S.; Dhillon, G.S.; Chen, J.; Bohara, K. Detection and monitoring wheat diseases using unmanned aerial vehicles (UAVs). Comput. Electron. Agric. 2024, 224, 109158. [Google Scholar] [CrossRef]
- Bakirci, M. Utilizing YOLOv8 for enhanced traffic monitoring in intelligent transportation systems (ITS) applications. Digit. Signal Process. 2024, 152, 104594. [Google Scholar] [CrossRef]
- Ramadan, M.N.; Basmaji, T.; Gad, A.; Hamdan, H.; Akgün, B.T.; Ali, M.A.; Alkhedher, M.; Ghazal, M. Towards early forest fire detection and prevention using AI-powered drones and the IoT. Internet Things 2024, 27, 101248. [Google Scholar] [CrossRef]
- Lyu, M.; Zhao, Y.; Huang, C.; Huang, H. Unmanned Aerial Vehicles for Search and Rescue: A Survey. Remote. Sens. 2023, 15, 3266. [Google Scholar] [CrossRef]
- Cao, Z.; Kooistra, L.; Wang, W.; Guo, L.; Valente, J. Real-time object detection based on uav remote sensing: A systematic literature review. Drones 2023, 7, 620. [Google Scholar] [CrossRef]
- Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Wei, L.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. pp. 21–37. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, C.; Yang, H.; Zhu, H.; Chen, M.; Yang, J. An improved deep learning approach for retrieving outfalls into rivers from uas imagery. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, C. Evaluation of Deep Learning Benchmarks in Retrieving Outfalls into Rivers with UAS Images2023. Available online: https://ieeexplore.ieee.org/abstract/document/10185073 (accessed on 17 July 2023).
- Huang, Q.; Fan, J.; Xu, H.; Han, W.; Huang, X.; Chen, Y. AFENet: Attention-guided feature enhancement network and a benchmark for low-altitude UAV sewage outfall detection. Array 2024, 22, 100343. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, J.; Zhu, L.; Liang, S.; Lu, W.; Ji, X. An Intelligent System for Outfall Detection in UAV Images Using Lightweight Convolutional Vision Transformer Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2024, 17, 6265–6277. [Google Scholar] [CrossRef]
- Xu, H.; Huang, Q.; Yang, Y.; Li, J.; Chen, X.; Han, W.; Wang, L. UAV-ODS: A real-time outfall detection system based on UAV remote sensing and edge computing. In Proceedings of the 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, 28–30 October 2022; pp. 01–09. [Google Scholar]
- Ahmed, I.; Khalil, A.; Ahmed, I.; Frnda, J. Sparse signal representation, sampling, and recovery in compressive sensing frameworks. IEEE Access 2022, 10, 85002–85018. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, Z.; Palaiahnakote, S.; Lu, T. Compressing YOLO network by compressive sensing. In Proceedings of the 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, China, 26–29 November 2017; pp. 19–24. [Google Scholar]
- Bayındır, C.; Namlı, B. Efficient sensing of von Kármán vortices using compressive sensing. Comput. Fluids 2021, 226, 104975. [Google Scholar] [CrossRef]
- Baranwal, N.; Singh, K.N.; Singh, A.K. YOLO-based ROI selection for joint encryption and compression of medical images with reconstruction through super-resolution network. Future Gener. Comput. Syst. 2024, 150, 1–9. [Google Scholar]
- Yu, G.; Zhong, Y.; Fu, D.; Chen, F.; Chen, C. Remote sensing estimation of δ15NPN in the Zhanjiang Bay using Sentinel-3 OLCI data based on machine learning algorithm. Front. Mar. Sci. 2024, 11, 1366987. [Google Scholar] [CrossRef]
- Jiao, J.; Tang, Y.-M.; Lin, K.-Y.; Gao, Y.; Ma, A.J.; Wang, Y.; Zheng, W.-S. Dilateformer: Multi-scale dilated transformer for visual recognition. IEEE Trans. Multimed. 2023, 25, 8906–8919. [Google Scholar] [CrossRef]
- Qi, Y.; He, Y.; Qi, X.; Zhang, Y.; Yang, G. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 6070–6079. [Google Scholar]
- Zhang, H.; Xu, C.; Zhang, S. Inner-IoU: More effective intersection over union loss with auxiliary bounding box. arXiv 2023, arXiv:2311.02877. [Google Scholar]
- Ma, S.; Xu, Y. Mpdiou: A loss for efficient and accurate bounding box regression. arXiv 2023, arXiv:2307.07662. [Google Scholar]
Hyperparameter Options | Setting |
---|---|
epoch | 200 |
lr0 | 0.01 |
lrf | 0.01 |
patience | 20 |
batch | 4 |
optimizer | SGD (Stochastic Gradient Descent) |
Model | mAP50/% | Params | ONNX/MB | GFLOPS |
---|---|---|---|---|
YOLOv8n | 83.6 | 3,157,200 | 11.6 | 8.9 |
YOLOv8s | 86.2 | 11,166,560 | 42.6 | 28.8 |
YOLOv8m | 87.6 | 25,902,640 | 98.7 | 79.3 |
YOLOv8l | 87.7 | 43,691,520 | 166 | 165.7 |
YOLOv8x | 88.1 | 68,229,648 | 260 | 258.5 |
Model | mAP50 (Pipe) | mAP50 (Gully) | mAP50 (Culvert) | mAP50 (Weir) | mAP50 (All) |
---|---|---|---|---|---|
YOLOv8n | 78 | 84.5 | 83.3 | 88.8 | 83.6 |
+DSConv | 79 | 85.4 | 86.6 | 89.5 | 85.1 |
+Inner-MPDIoU | 80.3 | 85.1 | 86 | 88.8 | 85 |
+MSDA | 79.2 | 83.6 | 86.1 | 90.1 | 84.8 |
+ALL | 79.6 | 85.3 | 87.7 | 90.3 | 85.7 |
Model | P/% | R/% | mAP50/% | Params | FPS |
---|---|---|---|---|---|
RT-DETR | 92.5 | 78.1 | 84.1 | 15,492,984 | 116 |
YOLOv3n | 90.8 | 76.7 | 84.2 | 4,054,580 | 238 |
YOLOv5n | 86.6 | 75.7 | 82.3 | 2,503,724 | 286 |
YOLOv6n | 84.9 | 75.8 | 81.1 | 4,234,140 | 270 |
YOLOv8n | 89.2 | 76.1 | 83.6 | 3,006,428 | 322 |
Ours | 91.6 | 77.3 | 85.7 | 3,881,640 | 172 |
Ours(transfer) | 90.4 | 80.6 | 87.0 | 3,881,640 | 222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zhou, H.; Yang, H. Smart Monitoring Method for Land-Based Sources of Marine Outfalls Based on an Improved YOLOv8 Model. Water 2024, 16, 3285. https://doi.org/10.3390/w16223285
Zhao S, Zhou H, Yang H. Smart Monitoring Method for Land-Based Sources of Marine Outfalls Based on an Improved YOLOv8 Model. Water. 2024; 16(22):3285. https://doi.org/10.3390/w16223285
Chicago/Turabian StyleZhao, Shicheng, Haolan Zhou, and Haiyan Yang. 2024. "Smart Monitoring Method for Land-Based Sources of Marine Outfalls Based on an Improved YOLOv8 Model" Water 16, no. 22: 3285. https://doi.org/10.3390/w16223285