The Application of a Mobile Unmanned Device for Monitoring Water and Sediment Pollution in the Port of Gdynia
<p>Elements of the MPSS system user interface: a part of the form containing the information on a given measurement sample and an analysis method (<b>left</b>) and the Web-GIS map showing the acquisition locations of measurement samples (<b>right</b>).</p> "> Figure 2
<p>The 3D view of the bathymetry map for the main route in the Port of Gdynia.</p> "> Figure 3
<p>IMOS-2 and HydroDron-1 vessels in the waters of the Gdynia Port basin (Photo credit: A. Bojke).</p> "> Figure 4
<p>Results of electrical conductivity (mS/cm) in surface and bottom water samples collected by HydroDron-1 and the IMOS-2 boat during four campaigns.</p> "> Figure 5
<p>Results of temperature (°C) in surface and bottom water samples collected by HydroDron-1 and the IMOS-2 boat during four campaigns.</p> "> Figure 6
<p>Results of pH in surface and bottom water samples collected by HydroDron-1 and the IMOS-2 boat during four campaigns.</p> "> Figure 7
<p>Results of N-total (mg/dm<sup>3</sup>) in surface and bottom water samples collected by HydroDron-1 and the IMOS-2 boat during four campaigns.</p> "> Figure 8
<p>Results of N-total in sediment samples collected by HydroDron-1 and the IMROS-2 boat during four campaigns.</p> "> Figure 9
<p>N-total (mg/dm<sup>3</sup>) surface interpolation maps for the Port of Gdynia for 4 seasons: winter, spring, summer, and autumn. <b>Top</b>: IMOS-2 measurements, <b>bottom</b>: HydroDron-1 measurements.</p> "> Figure 10
<p>N-total (mg/dm<sup>3</sup>) bottom interpolation maps for the Port of Gdynia for 4 seasons: winter, spring, summer, and autumn. <b>Top</b>: IMOS-2 measurements, <b>bottom</b>: HydroDron-1 measurements.</p> "> Figure 11
<p>N-total (mg/dm<sup>3</sup>) sediments interpolation maps for the Port of Gdynia for 4 seasons: winter, spring, summer, and autumn. <b>Top</b>: IMOS-2 measurements, <b>bottom</b>: HydroDron-1 measurements.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Unmanned Research Platform
2.2. Boat
2.3. Water Samples
2.4. Sediment Samples
2.5. Location of Sampling Points
2.6. Validation of the Unmanned Unit HydroDron-1
2.7. Method for HydroDron-1 Sampling
2.8. Method for IMOS-2 Sampling
2.9. Statistical Analyses
3. Results
3.1. Assessment of Duplicate Sample Collection
- IM—results of samples collected by IMOS-2;
- H—results of samples collected by HydroDron-1.
3.2. Results of Sample Comparisons
3.3. Spatial Interpolation of Measured Values
3.4. Pairwise Comparison of Values
3.5. Sampling Uncertainty
4. Discussion
4.1. Methods for Estimating Sampling Uncertainty
4.2. Others Unmanned Surface Vehicle
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Popek, M.; Dereszewska, A.; Dembska, G.; Pazikowska-Sapota, G. The Impact of Transport on the Quality of Water in the Port of Gdynia. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2022, 16, 167–173. [Google Scholar] [CrossRef]
- Filipkowska, A.; Kowalewska, G.; Pavoni, B.; Łȩczyński, L. Organotin compounds in surface sediments from seaports on the Gulf of Gdańsk (southern Baltic coast). Environ. Monit. Assess. 2011, 182, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Höglund, A.; Meier, H.E.M. Environmentally safe areas and routes in the Baltic proper using Eulerian tracers. Mar. Pollut. Bull. 2012, 64, 1375–1385. [Google Scholar] [CrossRef] [PubMed]
- Haseler, M.; Balciunas, A.; Hauk, R.; Sabaliauskaite, V.; Chubarenko, I.; Ershova, A.; Schernewski, G. Marine Litter Pollution in Baltic Sea Beaches—Application of the Sand Rake Method. Front. Environ. Sci. 2020, 8, 238. [Google Scholar] [CrossRef]
- Castendyk, D.; Voorhis, J.; Kucera, B. A Validated Method for Pit Lake Water Sampling Using Aerial Drones and Sampling Devices. Mine Water Environ. 2020, 39, 440–454. [Google Scholar] [CrossRef]
- Stateczny, A.; Burdziakowski, P. Universal Autonomous Control and Management. Pol. Marit. Res. 2019, 26, 30–39. [Google Scholar] [CrossRef]
- Du, Z.; Wen, Y.; Xiao, C.; Zhang, F.; Huang, L.; Zhou, C. Motion planning for Unmanned Surface Vehicle based on Trajectory Unit. Ocean Eng. 2018, 151, 46–56. [Google Scholar] [CrossRef]
- Yuan, S.; Li, Y.; Bao, F.; Xu, H.; Yang, Y.; Yan, Q.; Zhong, S.; Yin, H.; Xu, J.; Huang, Z.; et al. Marine environmental monitoring with unmanned vehicle platforms: Present applications and future prospects. Sci. Total Environ. 2023, 858, 159741. [Google Scholar] [CrossRef]
- Steimle, E.T.; Hall, M.L. Unmanned Surface Vehicles as Environmental Monitoring and Assessment Tools. In Proceedings of the OCEANS 2006, Boston, MA, USA, 18–21 September 2006. [Google Scholar] [CrossRef]
- Verfuss, U.K.; Sofia, A.; Harris, D.V.; Gillespie, D.; Fielding, S.; Jiménez, G.; Johnston, P.; Sinclair, R.R.; Sivertsen, A.; Solbø, S.A.; et al. A review of unmanned vehicles for the detection and monitoring of marine fauna. Mar. Pollut. Bull. 2019, 140, 17–29. [Google Scholar] [CrossRef]
- Bernabeu, A.M.; Plaza-Morlote, M.; Rey, D.; Almeida, M.; Dias, A.; Mucha, A.P. Improving the preparedness against an oil spill: Evaluation of the influence of environmental parameters on the operability of unmanned vehicles. Mar. Pollut. Bull. 2021, 172, 112791. [Google Scholar] [CrossRef]
- Stateczny, A.; Gierski, W. The concept of anti-collision system of autonomous surface vehicle. E3S Web Conf. 2018, 63, 00012. [Google Scholar] [CrossRef]
- Romano, A.; Duranti, P. Autonomous Unmanned Surface Vessels for Hydrographic Measurement and Environmental Monitoring. In Proceedings of the FIG Working Week, Rome, Italy, 6–10 May 2012. [Google Scholar]
- Polvara, R.; Sharma, S.; Sutton, R.; Wan, J.; Manning, A. Obstacle Avoidance Approaches for Autonomous Navigation of Unmanned Surface Vehicles. J. Navig. 2017, 71, 241–256. [Google Scholar] [CrossRef]
- Bodnar, M.; Konieczka, P.; Namieśnik, J. Sampling. In Analytical Separation Science; Anderson, J.L., Berthod, A., Pino, V., Stalcup, A.M., Eds.; Viley-VCH: Weinheim, Germany, 2016; Volume 5, pp. 1385–1400. [Google Scholar] [CrossRef]
- Giercuszkiewicz-Bajtlik, M.; Gworek, B. Experimental Methods of Evaluating Measurement Uncertainty Resulting from Sample Collection and Preparation for Analysis in Chemical Laboratories. Environ. Prot. Nat. Resour. 2014, 25, 21–25. [Google Scholar] [CrossRef]
- Thompson, M. Uncertainty of sampling in chemical analysis. Accredit. Qual. Assur. 1998, 3, 117–121. [Google Scholar] [CrossRef]
- Ramsey, M.H.; Thompson, M. Uncertainty from sampling, in the context of fitness for purpose. Accredit. Qual. Assur. 2007, 12, 503–513. [Google Scholar] [CrossRef]
- Bruggeman, M.; Sneyers, L.; Gijsbrechts, W.; Loots, H.; Braekers, D.; Lecomte, M. Uncertainty due to primary sampling of 222Rn in analyses of water. Appl. Radiat. Isot. 2023, 196, 110741. [Google Scholar] [CrossRef]
- Glavič-Cindro, D.; Bruggeman, M.; Črnič, B.; Nečemer, M.; Petrovič, T.; Prem, P.; Vodenik, B.; Zorko, B. Comparison of different approaches of soil sampling uncertainty determination. Appl. Radiat. Isot. 2023, 194, 110676. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, M.; Ellison, S.L.R.; Rostron, P. (Eds.) Eurachem/Eurolab/CITAC/Nordtest/AMC Guide: Measurement Uncertainty Arising from Sampling: A Guide to Methods and Approaches, 2nd ed.; Eurachem: Gembloux, Belgium, 2019. [Google Scholar]
- PN-EN ISO 5667-9:2005; Jakość Wody–Pobieranie Próbek–Część 9: Wytyczne Dotyczące Pobierania Próbek Wód Morskich. 2005. Available online: https://sklep.pkn.pl/pn-iso-5667-9-2005p.html (accessed on 6 January 2024).
- PN-EN ISO 10523:2012; Water Quality-Determination of pH (ISO 10523:2008). Available online: https://standards.iteh.ai/catalog/standards/cen/8e85ce30-e43b-4af1-a586-386403da6b56/en-iso-10523-2012 (accessed on 6 January 2024).
- PN-EN 27888:1999; Water Quality-Determination of Electrical Conductivity (ISO 7888:1985). Available online: https://infostore.saiglobal.com/en-au/standards/pn-en-27888-1999-922966_saig_pkn_pkn_2178929/ (accessed on 6 January 2024).
- PN-EN 1484:1999; Water Analysis-Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). Available online: https://standards.iteh.ai/catalog/standards/cen/7d0a16de-63ee-4536-a6f4-9ec990809a08/en-1484-1997 (accessed on 6 January 2024).
- ISO 17289:2014; Specifies an Optical Method for the Determination of Dissolved Oxygen in Water Using a Sensor Working on the Basis of Fluorescence Quenching. Available online: https://standards.iteh.ai/catalog/standards/iso/b79b1825-a85f-4d88-a351-10f34c61c803/iso-17289-2014 (accessed on 6 January 2024).
- PN-EN ISO 9377–2:2003; Jakość Wody-Oznaczanie Indeksu Oleju Mineralnego-Część 2: Metoda z Zastosowaniem Ekstrakcji Rozpuszczalnikiem i Chromatografii Gazowej. Available online: https://sklep.pkn.pl/pn-en-iso-9377-2-2003p.html (accessed on 6 January 2024).
- PN-EN ISO 5667-19:2006; Jakość Wody–Pobieranie Próbek–Część 19: Wytyczne Dotyczące Pobierania Próbek Osadów Morskich. 2006. Available online: https://sklep.pkn.pl/pn-en-iso-5667-19-2006p.html (accessed on 6 January 2024).
- PN-ISO 11261:2002; Jakość Qleby. Oznaczenie Azotu Ogólnego. Zmodyfikowana Metoda Kjeldahla. Available online: https://sklep.pkn.pl/pn-iso-11261-2002p.html (accessed on 6 January 2024).
- PN-EN ISO 16703:2011; Jakość Gleby-Oznaczanie Zawartości Węglowodorów w Zakresie od C10 do C40 Metodą Chromatografii Gazowej. Available online: https://sklep.pkn.pl/pn-en-iso-16703-2011e.html (accessed on 6 January 2024).
- Horricks, R.A.; Bannister, C.; Lewis-McCrea, L.M.; Hicks, J.; Watson, K.; Reid, G.K. Comparison of drone and vessel-based collection of microbiological water samples in marine environments. Environ. Monit. Assess 2022, 194, 439. [Google Scholar] [CrossRef]
- Hyk, W.; Stojek, Z. Analiza Statystyczna w Laboratorium Badawczym; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2019. (In Polish) [Google Scholar]
- Badanie Wód Portowych. Available online: https://www.port.gdynia.pl/monitoring-srodowiska/badanie-wod-portowych/ (accessed on 29 November 2023). (In Polish).
- A Free and Open Source Geographic Information System. Available online: https://qgis.org/en/site/ (accessed on 29 November 2023).
- SAGA—System for Automated Geoscientific Analyses. Available online: https://saga-gis.sourceforge.io/en/index.html (accessed on 29 November 2023).
- Lee, S.; Wolberg, G.; Shin, S.Y. Scattered Data Interpolation with Multilevel B-Splines. IEEE Trans. Vis. Comput. Graph. 1997, 3, 228–244. [Google Scholar] [CrossRef]
- Gluschke, M. Collaborative sampling trial in the context of quality assurance in the German marine monitoring programme for the North Sea and the Baltic Sea. Accredit. Qual. Assur. 2008, 13, 101–107. [Google Scholar] [CrossRef]
- Stangl, M.J. An electrofishing raft for sampling intermediate-size waters with restricted boat access. N. Am. J. Fish. Manag. 2001, 21, 679–682. [Google Scholar] [CrossRef]
- Barrera, C.; Padrón Armas, I.; Luis, F.; Llinas, O.; Marichal Plasencia, G.N. Trends and Challenges in Unmanned Surface Vehi-cles (USV): From Survey to Shipping. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2021, 15, 135–142. [Google Scholar] [CrossRef]
- Powers, C.; Hanlon, R.; Schmale, D.G. Remote collection of microorganisms at two depths in a freshwater lake using an unmanned surface vehicle (USV). PeerJ 2018, 1, e4290. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.G.L.; Eddy, T.D.; McIver, R.; Schmidt, A.L.; Thériault, M.H.; Boudreau, M.; Courtenay, S.C.; Lotze, H.K. Comparative analysis of different survey methods for monitoring fish assemblages in coastal habitats. PeerJ 2016, 4, e1832. [Google Scholar] [CrossRef]
- Codiga, D.L. A marine autonomous surface craft for long-duration, spatially explicit, multidisciplinary water column sampling in coastal and estuarine systems. J. Atmos. Ocean. Technol. 2015, 32, 627–641. [Google Scholar] [CrossRef]
- Demetillo, A.T.; Taboada, E.B. Real-Time Water Quality Monitoring For Small Aquatic Area Using Unmanned Surface Vehicle. Eng. Technol. Appl. Sci. Res. 2019, 9, 3959–3964. [Google Scholar] [CrossRef]
No. | Parameter | Methods |
---|---|---|
1 | Temperature | PB-36, issue 3 dated 25 February 2021 |
2 | pH | PN-EN ISO 10523:2012 [23] |
3 | Electrical conductivity at 20 °C | PN-EN 27888:1999 [24] |
4 | Total organic carbon (TOC) | PN-EN 1484:1999 [25] |
5 | Dissolved oxygen | ISO 17289:2014 [26] |
6 | N-total | PB-27, issue 4 dated 25 February 2021 |
7 | Nitrite nitrogen (N-NO2) | PB-29, issue 5 dated 25 February 2021 |
8 | Nitrate nitrogen (N-NO3) | PB-28, issue 5 dated 25 February 2021 |
9 | Ammoniacal nitrogen (N-NH4) | PB-30, issue 4 dated 25 February 2021 |
10 | P-total | PB-31, issue 5 dated 25 February 2021 |
11 | Phosphate phosphorus (P-PO4) | PB-32, issue 5 dated 25 February 2021 |
12 | Mineral oil index | PN-EN ISO 9377–2:2003 [27] |
13 | Sum of gasolines | PB-12, issue 9 dated 5 March 2021 |
No. | Parameter | Methods |
---|---|---|
1 | N-total | PN-ISO 11261:2002 [29] |
2 | P-total | PB-10, issue 10 dated 5 March 2021 |
3 | Mineral oils | PN-EN ISO 16703:2011 [30] |
Parameter | Water Surface Location (%) | Water Bottom Location (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Temperature | 3.0 | 2.9 | 4.5 | 13.4 | 8.6 | 4.0 | 3.2 | 6.9 | 5.3 | 9.3 | 7.4 | 7.1 | 3.0 | 5.8 |
pH | 0.2 | 1.4 | 1.4 | 0.8 | 1.1 | 1.4 | 0.7 | 0.3 | 0.8 | 1.5 | 0.8 | 0.8 | 1.2 | 1.1 |
EC | 0.2 | 0.1 | 0.1 | 0.3 | 0.2 | 0.1 | 0.1 | 0.5 | 0.6 | 0.7 | 0.5 | 0.5 | 0.3 | 0.7 |
TOC | 3.6 | 2.7 | 7.0 | 2.8 | 2.8 | 5.4 | 2.6 | 1.9 | 3.2 | 2.3 | 0.3 | 3.1 | 3.0 | 2.7 |
DO | 5.3 | 3.2 | 5.1 | 3.4 | 2.0 | 3.4 | 2.1 | 6.3 | 2.1 | 1.2 | 4.8 | 7.1 | 2.4 | 6.6 |
N-total | 8.6 | 5.4 | 19.2 | 3.5 | 7.7 | 9.4 | 6.5 | 6.6 | 5.8 | 8.0 | 7.4 | 5.2 | 27.7 | 7.5 |
N-NO2 | 1.9 | 11.7 | 4.5 | 15.5 | 2.0 | 16.7 | 2.2 | 20.2 | 16.7 | 23.2 | 9.1 | 3.8 | 20.8 | 2.2 |
N-NO3 | 3.6 | 3.4 | 17.9 | 6.9 | 23.2 | 2.5 | 29.2 | 7.5 | 7.8 | 4.5 | 8.9 | 5.2 | 10.4 | 8.7 |
N-NH4 | 19.7 | 25.2 | 21.7 | 5.2 | 34.1 | 19.5 | 33.0 | 21.1 | 16.8 | 6.4 | 20.8 | 16.9 | 43.1 | 33.9 |
P-total | 0.9 | 10.4 | 7.7 | 6.1 | 6.3 | 3.8 | 5.2 | 13.8 | 23.9 | 4.2 | 7.2 | 14.5 | 27.4 | 7.3 |
P-PO4 | 3.7 | 9.0 | 7.0 | 7.0 | 7.0 | 2.8 | 7.8 | 5.0 | 28.5 | 7.0 | 7.6 | 14.1 | 32.4 | 10.7 |
Mineral oils | 13.3 | 7.4 | 16.7 | 50.0 | 21.4 | 0.0 | 46.7 | 30.0 | 42.9 | 0.0 | 44.4 | 33.3 | 30.0 | 16.7 |
Gasoline | 66.1 | 65.3 | 0.0 | 22.2 | 0.0 | 28.3 | 56.1 | 65.2 | 0.0 | 0.0 | 0.0 | 66.1 | 30.6 | 79.3 |
Sediment Location (%) | ||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||||||||
N-total | 36.6 | 41.9 | 61.3 | 43.3 | 16.8 | 21.8 | 39.0 | |||||||
P-total | 22.9 | 25.3 | 17.3 | 16.1 | 18.4 | 7.7 | 11.2 | |||||||
Mineral oils | 62.2 | 44.6 | 50.3 | 27.9 | 21.7 | 19.6 | 26.3 |
No. | Parameter | Surface | Bottom | Sediments |
---|---|---|---|---|
1 | Temperature | A | A | - |
2 | pH | A | UA | - |
3 | Electrical conductivity at 20 °C | A | A | - |
4 | Total organic carbon (TOC) | A | A | - |
5 | Dissolved oxygen | A | UA | - |
6 | N-total | A | A | A |
7 | Nitrite nitrogen (N-NO2) | A | A | - |
8 | Nitrate nitrogen (N-NO3) | A | A | - |
9 | Ammoniacal nitrogen (N-NH4) | A | A | - |
10 | P-total | UA | A | A |
11 | Phosphate phosphorus (P-PO4) | A | A | - |
12 | Mineral oil index/Mineral oil | A | A | A |
13 | Sum of gasolines | A | A | - |
No. | Parameter | Surface | Sediments |
---|---|---|---|
1 | pH | 0.2 | - |
2 | Electrical conductivity at 20 °C | 0.5 | - |
3 | Total organic carbon (TOC) | 5 | - |
4 | Dissolved oxygen | 12 | - |
5 | N-total | 18 | 29 |
6 | Nitrite nitrogen (N-NO2) | 17 | - |
7 | Nitrate nitrogen (N-NO3) | 20 | - |
8 | P-total | 20 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojke, A.; Galer-Tatarowicz, K.; Flasińska, A.; Chybicki, A.; Łubniewski, Z.; Kargol, J.; Ostrowska, D.; Cichowska, A. The Application of a Mobile Unmanned Device for Monitoring Water and Sediment Pollution in the Port of Gdynia. Water 2024, 16, 252. https://doi.org/10.3390/w16020252
Bojke A, Galer-Tatarowicz K, Flasińska A, Chybicki A, Łubniewski Z, Kargol J, Ostrowska D, Cichowska A. The Application of a Mobile Unmanned Device for Monitoring Water and Sediment Pollution in the Port of Gdynia. Water. 2024; 16(2):252. https://doi.org/10.3390/w16020252
Chicago/Turabian StyleBojke, Aleksandra, Katarzyna Galer-Tatarowicz, Agnieszka Flasińska, Andrzej Chybicki, Zbigniew Łubniewski, Jadwiga Kargol, Dominika Ostrowska, and Agnieszka Cichowska. 2024. "The Application of a Mobile Unmanned Device for Monitoring Water and Sediment Pollution in the Port of Gdynia" Water 16, no. 2: 252. https://doi.org/10.3390/w16020252
APA StyleBojke, A., Galer-Tatarowicz, K., Flasińska, A., Chybicki, A., Łubniewski, Z., Kargol, J., Ostrowska, D., & Cichowska, A. (2024). The Application of a Mobile Unmanned Device for Monitoring Water and Sediment Pollution in the Port of Gdynia. Water, 16(2), 252. https://doi.org/10.3390/w16020252