The Venom of Vipera ammodytes ammodytes: Proteomics, Neurotoxic Effect and Neutralization by Antivenom
<p><span class="html-italic">Vipera ammodytes ammodytes</span>. Original photo: Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia.</p> "> Figure 2
<p>(<b>A</b>) Distribution of identified proteins for fraction 0 when different protein FASTA databases were used in the analysis; (<b>B</b>) Distribution of identified proteins for all fractions (0, 3A, 5A, 8A, 9A and 10A) when <span class="html-italic">Serpentes</span> protein FASTA databases (DB) were used in the analysis; (<b>C</b>) Distribution of identified proteins for all fractions (0, 3A, 5A, 8A, 9A and 10A) when <span class="html-italic">Vipera</span> protein FASTA databases (DB) were used in the analysis; (<b>D</b>) Distribution of identified proteins for all fractions (0, 3A, 5A, 8A, 9A and 10A) when <span class="html-italic">V. ammodytes</span> protein FASTA databases (DB) were used in the analysis; (<b>E</b>) Distribution of identified proteins for all fractions (0, 3A, 5A, 8A, 9A and 10A) when different protein FASTA databases were used in the analysis. Next to each fraction, the number of proteins identified in this fraction for all three databases used is given in brackets.</p> "> Figure 3
<p>Relative distribution of protein groups (%) in the <span class="html-italic">Vaa</span> venom determined by nano-liquid chromatography–tandem mass spectrometry-based proteomics: (<b>A</b>) DB <span class="html-italic">V. ammodytes</span>; (<b>B</b>) DB <span class="html-italic">Vipera</span>.</p> "> Figure 4
<p>Representative recording of contractions of a neuromuscular preparation of the diaphragm (NPD) induced by indirect EFS (·····) in the absence of venom. C<sub>1</sub> and C<sub>2</sub>—control contractions; panc 1 μM—contractions under the influence of 1 μM pancuronium; W<sub>1</sub> and W<sub>2</sub>—contractions after the washout of pancuronium; 10 “packages” of contractions in the function of time.</p> "> Figure 5
<p>Representative recording of contractions of a neuromuscular preparation of the diaphragm (NPD) induced by indirect EFS (<b>·····</b>) and direct EFS (<b>-----</b>) under the influence of venom. C<sub>1</sub> and C<sub>2</sub>—control contractions; panc 3 μM—contractions under the influence of 3 μM pancuronium; W<sub>1</sub> and W<sub>2</sub>—contractions after the washout of pancuronium; 12 “packages” of contractions induced by indirect EFS; 2 “packages” of contractions induced by direct EFS.</p> "> Figure 6
<p>Sigmoidal curves of the reduction in contractions of the neuromuscular preparation of the diaphragm (NPD) in a logarithmic function of time under the influence of venom and venom/antivenom mixtures at ratios of 1:2; 1:10 and 1:20 (<span class="html-italic">w</span>/<span class="html-italic">w</span>).</p> "> Figure 7
<p>Comparison of ET<sub>50</sub> (minutes) after the administration of venom and a venom/antivenom mixture at the ratios of 1:2; 1:10 and 1:20 (<span class="html-italic">w</span>/<span class="html-italic">w</span>) (mean ± SD, <sup>#</sup> <span class="html-italic">p</span> < 0.05, <sup>###</sup> <span class="html-italic">p</span> < 0.001 vs. venom; <sup>+++</sup> <span class="html-italic">p</span> < 0.001 between different mass ratios of venom/antivenom).</p> "> Figure 8
<p>Representative recording of contraction peaks of the neuromuscular preparations of the diaphragm (NPD) induced by indirect EFS: (<b>A</b>) Control contractions; (<b>B</b>) Contractions under the influence of pancuronium <span class="html-italic">(tetanic fade)</span>; (<b>C</b>) Contractions under the influence of venom; (<b>D</b>) Contractions under the influence of a mixture of venom/antivenom at a ratio of 1:20 (<span class="html-italic">w</span>/<span class="html-italic">w</span>) (white arrows show a facilitated release of neurotransmitters; black arrows show a reduced release of neurotransmitters—<span class="html-italic">tetanic fade</span>).</p> "> Figure 9
<p>AChE activity (U/mg P) in the neuromuscular preparations of the diaphragm (NPD) without the presence of venom (control), under the influence of venom and for the mixture of venom/antivenom at a ratio of 1:2, 1:10 and 1:20 (<span class="html-italic">w</span>/<span class="html-italic">w</span>) (mean ± SD, <span class="html-italic">p</span> > 0.05).</p> "> Figure 10
<p>Na<sup>+</sup>/K<sup>+</sup>-ATPase activity (U/mg P) in the neuromuscular preparations of the diaphragm (NPD) without the presence of venom (control), under the influence of venom and under the influence of a mixture of venom and antivenom at the ratios of 1:2; 1:10 and 1:20 (<span class="html-italic">w</span>/<span class="html-italic">w</span>) (mean ± SD, *** <span class="html-italic">p</span> < 0.001 vs. control; <sup>##</sup> <span class="html-italic">p</span> < 0.01, <sup>###</sup> <span class="html-italic">p</span> < 0.001 vs. venom; <sup>++</sup> <span class="html-italic">p</span><0.01 between different mass ratios of venom/antivenom).</p> "> Figure 11
<p>(<b>A</b>) Activity of the PLA2 in increasing concentrations of the <span class="html-italic">Vaa</span> venom (mg/mL); (<b>B</b>) Inhibition of the PLA2 activity in 1 mg/mL of the <span class="html-italic">Vaa</span> venom by increasing concentrations of the antivenom (mg/mL).</p> ">
1. Introduction
2. Materials and Methods
2.1. Chemicals and Animals
2.2. Proteomics of the Vaa Venom
2.2.1. Preparation of Protein Fractions
2.2.2. Sample Preparation for Proteomics
2.2.3. Nano-Liquid Chromatography Tandem Mass Spectrometry-Based Proteomics
2.2.4. Data Processing, Statistics and Bioinformatics Analysis
2.3. Examination of the Contractility of the Neuromuscular Preparations of the Diaphragm (NPD)
2.4. Determination of the Activity of Acetylcholinesterase (AChE) and Sodium/Potassium ATPase (Na+/K+-ATPase) in the NPD
2.5. Activity of Venom Phospholipase A2 (PLA2) and Neutralization by Antivenom
2.6. Statistical Analysis
3. Results
3.1. Proteomics of the Vaa Venom
3.2. The Effects of Vaa Venom on the NPD Contractility and Protective Effect of Antivenom
3.3. The Effects of Vaa Venom on the Activity of AChE and Na+/K+-ATPase in the NPD
3.4. The Examination of PLA2 Activity in Vaa Venom and Neutralization by Antivenom
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minghui, R.; Malecela, M.N.; Cooke, E.; Abela-Ridder, B. WHO’s Snakebite Envenoming Strategy for Prevention and Control. Lancet Glob. Health 2019, 7, e837–e838. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.A.; Casewell, N.R.; Ainsworth, S.A.; Lalloo, D.G. The Time Is Now: A Call for Action to Translate Recent Momentum on Tackling Tropical Snakebite into Sustained Benefit for Victims. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, C.; Ledsgaard, L.; Dehli, R.I.; Ahmadi, S.; Sørensen, C.V.; Laustsen, A.H. Engineering and Design Considerations for Next-Generation Snakebite Antivenoms. Toxicon Off. J. Int. Soc. Toxinol. 2019, 167, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Tomović, L.; Anđelković, M.; Krizmanić, I.; Ajtić, R.; Urošević, A.; Labus, N.; Simović, A.; Maričić, M.; Golubović, A.; Ćorović, J.; et al. Distribution of Three Vipera Species in the Republic of Serbia. Bull. Nat. Hist. Mus. 2019, 12, 217–242. [Google Scholar] [CrossRef]
- Chan, Y.S.; Cheung, R.C.F.; Xia, L.; Wong, J.H.; Ng, T.B.; Chan, W.Y. Snake Venom Toxins: Toxicity and Medicinal Applications. Appl. Microbiol. Biotechnol. 2016, 100, 6165–6181. [Google Scholar] [CrossRef]
- Munawar, A.; Ali, S.A.; Akrem, A.; Betzel, C. Snake Venom Peptides: Tools of Biodiscovery. Toxins 2018, 10, 474. [Google Scholar] [CrossRef]
- Pandit, K.; Rawal, A.; Maskey, H.M.S.; Nepal, G. Neurological and Neuro-Ophthalmological Manifestations of Snake Bite: A Systematic Review. Ann. Med. Surg. 2024, 86, 392–400. [Google Scholar] [CrossRef]
- Silva, A.; Hodgson, W.C.; Isbister, G.K. Antivenom for Neuromuscular Paralysis Resulting From Snake Envenoming. Toxins 2017, 9, 143. [Google Scholar] [CrossRef]
- Ranawaka, U.K.; Lalloo, D.G.; de Silva, H.J. Neurotoxicity in Snakebite--the Limits of Our Knowledge. PLoS Negl. Trop. Dis. 2013, 7, e2302. [Google Scholar] [CrossRef]
- Silva, A.; Maduwage, K.; Sedgwick, M.; Pilapitiya, S.; Weerawansa, P.; Dahanayaka, N.J.; Buckley, N.A.; Johnston, C.; Siribaddana, S.; Isbister, G.K. Neuromuscular Effects of Common Krait (Bungarus Caeruleus) Envenoming in Sri Lanka. PLoS Negl. Trop. Dis. 2016, 10, e0004368. [Google Scholar] [CrossRef]
- Silva, A.; Maduwage, K.; Sedgwick, M.; Pilapitiya, S.; Weerawansa, P.; Dahanayaka, N.J.; Buckley, N.A.; Siribaddana, S.; Isbister, G.K. Neurotoxicity in Russell’s Viper (Daboia Russelii) Envenoming in Sri Lanka: A Clinical and Neurophysiological Study. Clin. Toxicol. 2016, 54, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, W.C.; Wickramaratna, J.C. In Vitro Neuromuscular Activity of Snake Venoms. Clin. Exp. Pharmacol. Physiol. 2002, 29, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Bickler, P.E.; Abouyannis, M.; Bhalla, A.; Lewin, M.R. Neuromuscular Weakness and Paralysis Produced by Snakebite Envenoming: Mechanisms and Proposed Standards for Clinical Assessment. Toxins 2023, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.L.; Viegas, M.F.; Da Silva, S.L.; Soares, A.M.; Ramos, M.J.; Fernandes, P.A. The Chemistry of Snake Venom and Its Medicinal Potential. Nat. Rev. Chem. 2022, 6, 451–469. [Google Scholar] [CrossRef]
- Castro-Amorim, J.; Novo de Oliveira, A.; Da Silva, S.L.; Soares, A.M.; Mukherjee, A.K.; Ramos, M.J.; Fernandes, P.A. Na/K-ATPase_Catalytically Active Snake Venom PLA2 Enzymes: An Overview of Its Elusive Mechanisms of Reaction. J. Med. Chem. 2023, 66, 5364–5376. [Google Scholar] [CrossRef]
- Bittenbinder, M.A.; van Thiel, J.; Cardoso, F.C.; Casewell, N.R.; Gutiérrez, J.-M.; Kool, J.; Vonk, F.J. Tissue Damaging Toxins in Snake Venoms: Mechanisms of Action, Pathophysiology and Treatment Strategies. Commun. Biol. 2024, 7, 358. [Google Scholar] [CrossRef]
- Tonello, F.; Simonato, M.; Aita, A.; Pizzo, P.; Fernández, J.; Lomonte, B.; Gutiérrez, J.M.; Montecucco, C. A Lys49-PLA2 Myotoxin of Bothrops Asper Triggers a Rapid Death of Macrophages That Involves Autocrine Purinergic Receptor Signaling. Cell Death Dis. 2012, 3, e343. [Google Scholar] [CrossRef]
- Šribar, J.; Oberčkal, J.; Križaj, I. Understanding the Molecular Mechanism Underlying the Presynaptic Toxicity of Secreted Phospholipases A2: An Update. Toxicon 2014, 89, 9–16. [Google Scholar] [CrossRef]
- Kirakosyan, G.; Mohamadvarzi, M.; Ghulikyan, L.; Zaqaryan, N.; Kishmiryan, A.; Ayvazyan, N. Morphological and Functional Alteration of Erythrocyte Ghosts and Giant Unilamellar Vesicles Caused by Vipera Latifi Venom. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2016, 190, 48–53. [Google Scholar] [CrossRef]
- Jayaraman, G.; Krishnaswamy, T.; Kumar, S.; Yu, C. Binding of Nucleotide Triphosphates to Cardiotoxin Analogue II from the Taiwan Cobra Venom (Naja Naja Atra). Elucidation of the Structural Interactions in the dATP-Cardiotoxin Analogue Ii Complex. J. Biol. Chem. 1999, 274, 17869–17875. [Google Scholar] [CrossRef]
- Kumar, T.K.S.; Jayaraman, G.; Lee, C.S.; Arunkumar, A.I.; Sivaraman, T.; Samuel, D.; Yu, C. Snake Venom Cardiotoxins-Structure, Dynamics, Function and Folding. J. Biomol. Struct. Dyn. 1997, 15, 431–463. [Google Scholar] [CrossRef] [PubMed]
- Bougis, P.E.; KhElif, A.; Rochat, H. On the Inhibition of [Na+,K+]-ATPasesby the Components of Naja Mossambica Activities Mossambica Venom: Evidence for Two Distinct Rat Brain [Na+,K+]-ATPase. Biochemistry 1989, 28, 3037–3043. [Google Scholar] [CrossRef] [PubMed]
- Kaplia, A.A.; Kravtsova, V.V.; Kravtsov, A.V. [Effect of phospholipase A2 from Naja naja oxiana venom on activity of Na+,K+-ATPase isoenzymes in rat brain]. Biokhimiia Mosc. Russ. 1996, 61, 998–1005. [Google Scholar]
- Leite, R.S.; Pinheiro, G.H.D.; Fernandes, M.N.; Selistre-de-Araujo, H.S. The Effect of the Myotoxic Lys49 Phospholipase A(2) from Agkistrodon Contortrix Laticinctus Snake Venom on Na+/K+ -ATPase Activity of Toad Bladders. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA 2006, 20, 1478–1480. [Google Scholar] [CrossRef]
- Leite, R.S.; Franco, W.; Ownby, C.L.; Selistre-de-Araujo, H.S. Effects of ACL Myotoxin, a Lys49 Phospholipase A(2) from Agkistrodon Contortrix Laticinctus Snake Venom, on Water Transport in the Isolated Toad Urinary Bladder. Toxicon Off. J. Int. Soc. Toxinol. 2004, 43, 77–83. [Google Scholar] [CrossRef]
- Lamb, T.; De Haro, L.; Lonati, D.; Brvar, M.; Eddleston, M. Antivenom for European Vipera Species Envenoming. Clin. Toxicol. 2017, 55, 557–568. [Google Scholar] [CrossRef]
- Dobaja Borak, M.; Babić, Ž.; Caganova, B.; Grenc, D.; Karabuva, S.; Kolpach, Z.; Krakowiak, A.; Kolesnikova, V.; Lukšić, B.; Pap, C.; et al. Viper Envenomation in Central and Southeastern Europe: A Multicentre Study. Clin. Toxicol. 2023, 61, 656–664. [Google Scholar] [CrossRef]
- Latinović, Z.; Leonardi, A.; Šribar, J.; Sajevic, T.; Žužek, M.C.; Frangež, R.; Halassy, B.; Trampuš-Bakija, A.; Pungerčar, J.; Križaj, I. Venomics of Vipera Berus Berus to Explain Differences in Pathology Elicited by Vipera Ammodytes Ammodytes Envenomation: Therapeutic Implications. J. Proteom. 2016, 146, 34–47. [Google Scholar] [CrossRef]
- Giribaldi, J.; Kazandjian, T.; Amorim, F.G.; Whiteley, G.; Wagstaff, S.C.; Cazals, G.; Enjalbal, C.; Quinton, L.; Casewell, N.R.; Dutertre, S. Venomics of the Asp Viper Vipera Aspis Aspis from France. J. Proteom. 2020, 218, 103707. [Google Scholar] [CrossRef]
- Georgieva, D.; Arni, R.K.; Betzel, C. Proteome Analysis of Snake Venom Toxins: Pharmacological Insights. Expert Rev. Proteom. 2008, 5, 787–797. [Google Scholar] [CrossRef]
- Tasoulis, T.; Isbister, G.K. A Current Perspective on Snake Venom Composition and Constituent Protein Families. Arch. Toxicol. 2023, 97, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Lukic, I.; Blagojevic, V.; Minic, R.; Ivanovic, S.; Borozan, S.; Cupic, V.; Zivkovic, I. Comparison of Cytotoxicity Methods for Studying Vipera Ammodytes Venom and the Anticytotoxic Potency of Antivenom. Cent.-Eur. J. Immunol. 2024, 49, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.F.M.; Diedrich, J.K.; Moresco, J.J.; Yates, J.R. Differential Precipitation of Proteins: A Simple Protein Fractionation Strategy to Gain Biological Insights with Proteomics. J. Am. Soc. Mass Spectrom. 2023, 34, 2025–2033. [Google Scholar] [CrossRef] [PubMed]
- Rešetar Maslov, D.; Rubić, I.; Farkaš, V.; Kuleš, J.; Beer Ljubić, B.; Beletić, A.; Samardžija, M.; Kovačić, M.; Jurkić Krsteska, G.; Mrljak, V. Characterization and LC-MS/MS Based Proteomic Analysis of Extracellular Vesicles Separated from Blood Serum of Healthy and Dogs Naturally Infected by Babesia Canis. A Preliminary Study. Vet. Parasitol. 2024, 328, 110188. [Google Scholar] [CrossRef]
- Rešetar Maslov, D.; Farkaš, V.; Rubić, I.; Kuleš, J.; Beletić, A.; Beer Ljubić, B.; Šmit, I.; Mrljak, V.; Torti, M. Serum Proteomic Profiles Reflect the Stages of Myxomatous Mitral Valve Disease in Dogs. Int. J. Mol. Sci. 2023, 24, 7142. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Solano, G.; Pla, D.; Herrera, M.; Segura, Á.; Vargas, M.; Villalta, M.; Sánchez, A.; Sanz, L.; Lomonte, B.; et al. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins 2017, 9, 163. [Google Scholar] [CrossRef]
- Krummer, S.; Thiermann, H.; Worek, F.; Eyer, P. Equipotent Cholinesterase Reactivation in Vitro by the Nerve Agent Antidotes HI 6 Dichloride and HI 6 Dimethanesulfonate. Arch. Toxicol. 2002, 76, 589–595. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Feather-Stone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Pari, L.; Murugavel, P. Diallyl Tetrasulfide Improves Cadmium Induced Alterations of Acetylcholinesterase, ATPases and Oxidative Stress in Brain of Rats. Toxicology 2007, 234, 44–50. [Google Scholar] [CrossRef]
- Tan, N.H.; Tan, C.S. Acidimetric Assay for Phospholipase A Using Egg Yolk Suspension as Substrate. Anal. Biochem. 1988, 170, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Prijatelj, P.; Copic, A.; Krizaj, I.; Gubensek, F.; Pungercar, J. Charge Reversal of Ammodytoxin A, a Phospholipase A2-Toxin, Does Not Abolish Its Neurotoxicity. Biochem. J. 2000, 352 Pt 2, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Kerkkamp, H.M.I.; Kini, R.M.; Pospelov, A.S.; Vonk, F.J.; Henkel, C.V.; Richardson, M.K. Snake Genome Sequencing: Results and Future Prospects. Toxins 2016, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Modahl, C.M.; Brahma, R.K.; Koh, C.Y.; Shioi, N.; Kini, R.M. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents. Annu. Rev. Anim. Biosci. 2020, 8, 91–116. [Google Scholar] [CrossRef]
- Damm, M.; Hempel, B.-F.; Süssmuth, R.D. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins 2021, 13, 427. [Google Scholar] [CrossRef]
- Petras, D.; Hempel, B.-F.; Göçmen, B.; Karis, M.; Whiteley, G.; Wagstaff, S.C.; Heiss, P.; Casewell, N.R.; Nalbantsoy, A.; Süssmuth, R.D. Intact Protein Mass Spectrometry Reveals Intraspecies Variations in Venom Composition of a Local Population of Vipera Kaznakovi in Northeastern Turkey. J. Proteom. 2019, 199, 31–50. [Google Scholar] [CrossRef]
- Gopcevic, K.; Karadzic, I.; Izrael-Zivkovic, L.; Medic, A.; Isakovic, A.; Popović, M.; Kekic, D.; Stanojkovic, T.; Hozic, A.; Cindric, M. Study of the Venom Proteome of Vipera Ammodytes Ammodytes (Linnaeus, 1758): A Qualitative Overview, Biochemical and Biological Profiling. Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 37, 100776. [Google Scholar] [CrossRef]
- Casewell, N.R.; Jackson, T.N.W.; Laustsen, A.H.; Sunagar, K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol. Sci. 2020, 41, 570–581. [Google Scholar] [CrossRef]
- Georgieva, D.; Risch, M.; Kardas, A.; Buck, F.; von Bergen, M.; Betzel, C. Comparative Analysis of the Venom Proteomes of Vipera Ammodytes Ammodytes and Vipera Ammodytes Meridionalis. J. Proteome Res. 2008, 7, 866–886. [Google Scholar] [CrossRef]
- Leonardi, A.; Sajevic, T.; Pungerčar, J.; Križaj, I. Comprehensive Study of the Proteome and Transcriptome of the Venom of the Most Venomous European Viper: Discovery of a New Subclass of Ancestral Snake Venom Metalloproteinase Precursor-Derived Proteins. J. Proteome Res. 2019, 18, 2287–2309. [Google Scholar] [CrossRef]
- Sajevic, T.; Leonardi, A.; Križaj, I. An Overview of Hemostatically Active Components of Vipera Ammodytes Ammodytes Venom. Toxin Rev. 2014, 33, 33–36. [Google Scholar] [CrossRef]
- Sanchez, E.F.; Flores-Ortiz, R.J.; Alvarenga, V.G.; Eble, J.A. Direct Fibrinolytic Snake Venom Metalloproteinases Affecting Hemostasis: Structural, Biochemical Features and Therapeutic Potential. Toxins 2017, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Escalante, T.; Rucavado, A.; Herrera, C. Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding. Toxins 2016, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Siigur, E.; Aaspõllu, A.; Siigur, J. Sequence Diversity of Vipera Lebetina Snake Venom Gland Serine Proteinase Homologs--Result of Alternative-Splicing or Genome Alteration. Gene 2001, 263, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Calvete, J.J.; Marcinkiewicz, C.; Sanz, L. Snake Venomics of Bitis Gabonica Gabonica. Protein Family Composition, Subunit Organization of Venom Toxins, and Characterization of Dimeric Disintegrins Bitisgabonin-1 and Bitisgabonin-2. J. Proteome Res. 2007, 6, 326–336. [Google Scholar] [CrossRef]
- Ogawa, T.; Chijiwa, T.; Oda-Ueda, N.; Ohno, M. Molecular Diversity and Accelerated Evolution of C-Type Lectin-like Proteins from Snake Venom. Toxicon Off. J. Int. Soc. Toxinol. 2005, 45, 1–14. [Google Scholar] [CrossRef]
- van den Berg, L.M.; Gringhuis, S.I.; Geijtenbeek, T.B.H. An Evolutionary Perspective on C-Type Lectins in Infection and Immunity. Ann. N. Y. Acad. Sci. 2012, 1253, 149–158. [Google Scholar] [CrossRef]
- Calvete, J.J.; Marcinkiewicz, C.; Monleón, D.; Esteve, V.; Celda, B.; Juárez, P.; Sanz, L. Snake Venom Disintegrins: Evolution of Structure and Function. Toxicon Off. J. Int. Soc. Toxinol. 2005, 45, 1063–1074. [Google Scholar] [CrossRef]
- Calvete, J.J. The Continuing Saga of Snake Venom Disintegrins. Toxicon Off. J. Int. Soc. Toxinol. 2013, 62, 40–49. [Google Scholar] [CrossRef]
- Milovanovic, V.; Minic, R.; Vakic, J.; Ivanovic, S.; Cupic, V.; Borozan, S.; Nesic, A.; Zivkovic, I. MTT Based L-Aminoacid Oxidase Activity Test for Determination of Antivenom Potency against Vipera Ammodytes Envenomation. Toxicon Off. J. Int. Soc. Toxinol. 2021, 192, 57–65. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Lomonte, B. Phospholipases A2: Unveiling the Secrets of a Functionally Versatile Group of Snake Venom Toxins. Toxicon Off. J. Int. Soc. Toxinol. 2013, 62, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Osipov, A.; Utkin, Y. Effects of Snake Venom Polypeptides on Central Nervous System. Cent. Nerv. Syst. Agents Med. Chem. 2012, 12, 315–328. [Google Scholar] [CrossRef]
- AlShammari, A.K.; Abd El-Aziz, T.M.; Al-Sabi, A. Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels. Toxins 2023, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Logonder, U.; Krizaj, I.; Rowan, E.G.; Harris, J.B. Neurotoxicity of Ammodytoxin a in the Envenoming Bites of Vipera Ammodytes Ammodytes. J. Neuropathol. Exp. Neurol. 2008, 67, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Yu, B. Role of Presynaptic Acetylcholine Autoreceptors at Motor Nerve Endings on Tetanic and Train-of-Four Fade Seen during a Nondepolarizing Neuromuscular Block. Anesthesiology 2007, 106, 1243. [Google Scholar] [CrossRef]
- Jonsson, M.; Eriksson, L.I. Role of Presynaptic Acetylcholine Autoreceptors at Motor Nerve Endings on Tetanic and Train-of-Four Fade Seen during a Nondepolarizing Neuromuscular Block. Anesthesiology 2007, 106, 1243–1244. [Google Scholar] [CrossRef]
- Alves-do-Prado, W.; Corrado, A.P.; Prado, W.A. Reversal by Atropine of Tetanic Fade Induced in Cats by Antinicotinic and Anticholinesterase Agents. Anesth. Analg. 1987, 66, 492–496. [Google Scholar] [CrossRef]
- Faria, M.; Oliveira, L.; Timóteo, M.A.; Lobo, M.G.; Correia-De-Sá, P. Blockade of Neuronal Facilitatory Nicotinic Receptors Containing Alpha 3 Beta 2 Subunits Contribute to Tetanic Fade in the Rat Isolated Diaphragm. Synapse 2003, 49, 77–88. [Google Scholar] [CrossRef]
- Frobert, Y.; Créminon, C.; Cousin, X.; Rémy, M.H.; Chatel, J.M.; Bon, S.; Bon, C.; Grassi, J. Acetylcholinesterases from Elapidae Snake Venoms: Biochemical, Immunological and Enzymatic Characterization. Biochim. Biophys. Acta 1997, 1339, 253–267. [Google Scholar] [CrossRef]
- Benziane, B.; Björnholm, M.; Pirkmajer, S.; Austin, R.L.; Kotova, O.; Viollet, B.; Zierath, J.R.; Chibalin, A.V. Activation of AMP-Activated Protein Kinase Stimulates Na+,K+-ATPase Activity in Skeletal Muscle Cells. J. Biol. Chem. 2012, 287, 23451–23463. [Google Scholar] [CrossRef]
- Rolfe, D.F.; Brown, G.C. Cellular Energy Utilization and Molecular Origin of Standard Metabolic Rate in Mammals. Physiol. Rev. 1997, 77, 731–758. [Google Scholar] [CrossRef] [PubMed]
- Erecińska, M.; Silver, I.A. ATP and Brain Function. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1989, 9, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.; Van Hardeveld, C.; Everts, M.E. Significance of Cation Transport in Control of Energy Metabolism and Thermogenesis. Physiol. Rev. 1991, 71, 733–774. [Google Scholar] [CrossRef] [PubMed]
- Ivanušec, A.; Šribar, J.; Veranič, P.; Križaj, I. The Phospholipase Activity of Ammodytoxin, a Prototype Snake Venom β-Neurotoxin, Is Not Obligatory for Cell Internalisation and Translocation to Mitochondria. Toxins 2022, 14, 375. [Google Scholar] [CrossRef]
- Logonder, U.; Jenko-Praznikar, Z.; Scott-Davey, T.; Pungercar, J.; Krizaj, I.; Harris, J.B. Ultrastructural Evidence for the Uptake of a Neurotoxic Snake Venom Phospholipase A2 into Mammalian Motor Nerve Terminals. Exp. Neurol. 2009, 219, 591–594. [Google Scholar] [CrossRef]
- Sheng, Z.-H.; Cai, Q. Mitochondrial Transport in Neurons: Impact on Synaptic Homeostasis and Neurodegeneration. Nat. Rev. Neurosci. 2012, 13, 77–93. [Google Scholar] [CrossRef]
Name | Mw (kDa) | pI | Relative Abundance of Protein Groups (%) | Enzyme Activity | Enzyme Action |
---|---|---|---|---|---|
Ammodytoxins—Atxs | Presynaptic neurotoxins | ||||
Ammodytoxin A (AtxA) | 15.5 | 7.97 | 1.45 | active | Most toxic |
Ammodytoxin B (AtxB) | 15.5 | 7.83 | 1.45 | active | * 28 times less toxic than AtxA |
Ammodytoxin C (AtxC) | 15.5 | 7.62 | 1.45 | active | * 17 times less toxic than AtxA |
Ammodytins—Atns | |||||
Ammodytin L (AtnL) | 15.6 | 8.5 | 2.90 | inactive | Myotoxic, cardiotoxic |
Ammodytin I1 (AtnI1) | 15.4 | 5.25 | 1.45 | active | Non-toxic |
Ammodytin I2 (AtnI2) | 15.3 15.2 | 6.47 5.91 | 1.45 1.45 | active | Non-toxic |
Time (min) | The Mean Values of the NPD Contractions (%) Compared to the Control Contractions | |||
---|---|---|---|---|
Venom | Venom/Antivenom 1:2 | Venom/Antivenom 1:10 | Venom/Antivenom 1:20 | |
15 | 90.95 | 96.55 | 97.78 | 93.60 |
30 | 79.13 | 84.61 | 89.51 | 89.92 |
45 | 64.15 | 72.20 | 76.26 | 86.08 |
60 | 52.68 | 61.47 | 71.13 | 88.27 |
75 | 40.74 | 46.64 | 66.01 | 81.50 |
90 | 31.49 | 40.67 | 63.21 | 80.76 |
105 | 24.35 | 34.79 | 60.30 | 74.09 |
120 | 16.56 | 30.50 | 54.86 | 72.49 |
135 | 14.93 | 21.64 | 48.91 | 68.71 |
150 | 12.30 | 18.00 | 36.56 | 67.11 |
165 | 10.36 | 13.15 | 29.45 | 67.06 |
180 | 8.78 | 10.54 | 22.61 | 67.26 |
195 | 61.65 | |||
210 | 58.79 | |||
225 | 56.90 |
Venom and Venom/Antivenom Mixtures at Different Mass Ratios | Venom | Venom/Antivenom 1:2 | Venom/Antivenom 1:10 | Venom/Antivenom 1:20 |
---|---|---|---|---|
ET50 (minutes) | 60.17 ± 2.43 | 73.29 ± 3.02 | 114.80 ± 12.16 | 317.80 ± 40.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanović, S.R.; Rešetar Maslov, D.; Rubić, I.; Mrljak, V.; Živković, I.; Borozan, N.; Grujić-Milanović, J.; Borozan, S. The Venom of Vipera ammodytes ammodytes: Proteomics, Neurotoxic Effect and Neutralization by Antivenom. Vet. Sci. 2024, 11, 605. https://doi.org/10.3390/vetsci11120605
Ivanović SR, Rešetar Maslov D, Rubić I, Mrljak V, Živković I, Borozan N, Grujić-Milanović J, Borozan S. The Venom of Vipera ammodytes ammodytes: Proteomics, Neurotoxic Effect and Neutralization by Antivenom. Veterinary Sciences. 2024; 11(12):605. https://doi.org/10.3390/vetsci11120605
Chicago/Turabian StyleIvanović, Saša R., Dina Rešetar Maslov, Ivana Rubić, Vladimir Mrljak, Irena Živković, Nevena Borozan, Jelica Grujić-Milanović, and Sunčica Borozan. 2024. "The Venom of Vipera ammodytes ammodytes: Proteomics, Neurotoxic Effect and Neutralization by Antivenom" Veterinary Sciences 11, no. 12: 605. https://doi.org/10.3390/vetsci11120605
APA StyleIvanović, S. R., Rešetar Maslov, D., Rubić, I., Mrljak, V., Živković, I., Borozan, N., Grujić-Milanović, J., & Borozan, S. (2024). The Venom of Vipera ammodytes ammodytes: Proteomics, Neurotoxic Effect and Neutralization by Antivenom. Veterinary Sciences, 11(12), 605. https://doi.org/10.3390/vetsci11120605