Neuromuscular Weakness and Paralysis Produced by Snakebite Envenoming: Mechanisms and Proposed Standards for Clinical Assessment
<p>Similarities and differences in mechanisms and effects of depolarizing neuromuscular block produced by (<b>A</b>) β-neurotoxins and (<b>B</b>) Succinylcholine. β-toxins and succinylcholine share the postsynaptic effects of depolarization and flaccid paralysis but diverge in that succinylcholine acts exclusively on the postsynapse while snake venom sPLA2 (svPLA2) classified as β-neurotoxins toxins produce effects directly on both the presynapse with postsynaptic sequelae resulting in paralysis and muscle membrane damage oftentimes from non-enzymatic svPLA2s. Postsynaptically, both classes of agents cause hyperactivation of nicotinic receptors (nAChRs), via uncontrolled acetylcholine (Ach) release, indirectly in the case of (<b>A</b>) β-neurotoxins because of uncontrolled release of Ach and directly in the case of (<b>B</b>) succinylcholine by persistent opening of the nAChR. Because activated nAChRs rapidly desensitize, profound but brief paralysis occurs with rapidly metabolized succinylcholine and prolonged weakness with sPLA2 toxins that also damage presynapse membranes. * Very rarely, succinylcholine can case Phase II block related to disease or repeated administration. Disruption of the presynaptic membrane and other inflammatory events may result in arachidonic acid-induced reductions in synaptic vesical regeneration with consequences for repopulation and further reduction in strength of synaptic transmission.</p> "> Figure 2
<p>Neuromuscular responses to nerve stimulation with non-depolarizing and depolarizing blocker administration and recovery. Responses to “train-of-four” nerve stimulation are shown as vertical lines. (<b>A</b>) Pattern of evoked muscle responses to twitch stimulation after administration of a non-depolarizing neuromuscular blocking drug (NDNMB), followed by antagonism with neostigmine(<span style="color:red">▼</span>), hastens the rate of recovery, if the twitch has already started to increase. (<b>B</b>) Pattern of evoked muscle responses to twitch stimulation after administration of succinylcholine. (<b>C</b>) ToF monitoring of onset and recovery from neuromuscular block produced by a NDNMB. Neostigmine can be utilized for reversal of NDNMBs such as naturally occurring curare or synthetics such as pancuronium, vecuronium or rocuronium.</p> ">
Abstract
:1. Respiratory Muscle Paralysis Is a Common Factor in Snakebite Envenoming Lethality
2. Clinical Syndromes of Paralytic Snakebite Envenoming
3. Pharmacology of Paralytic Snake Venom and Neuromuscular Blocking Drugs
3.1. Depolarizing Toxins and Drugs
3.1.1. β-Toxins (Venom sPLA2 Neurotoxicity)
3.1.2. Pharmacologically Depolarizing Neuromuscular Blockers
3.1.3. Reversal of Succinylcholine Effects
3.1.4. Fasciculins
3.1.5. Nerve Agents
3.2. Non-Depolarizing Toxins and Drugs
3.2.1. Three-Finger Toxins (3FTxs, α-Toxins)
3.2.2. Non-Depolarizing Muscle Relaxants
3.2.3. Reversal of Non-Depolarizing Neuromuscular Drug Effects
3.2.4. Botulinum Toxin
4. Reversal of Venom-Induced Weakness and Paralysis
4.1. Neostigmine and Other Anti-Cholinesterase Drugs
4.2. Antivenom for the Treatment of Weakness and Paralysis
5. Tools for Clinical Assessment of Neuromuscular Function in Snakebite
5.1. Hypothetical Snakebite Weakness and Paralysis Scoring
- Clinical and quantitative protocols for assessment of venom-induced neuromuscular weakness and paralysis;
- Optimization of airway management and mechanical ventilation;
- Monitoring of adequacy of breathing and gas exchange;
- Understanding utility and limitations of drugs in reversal of weakness and paralysis.
- Grade 0
- No weakness.
- Grade 1
- Mild cranial nerve deficit (e.g., ptosis) and no bulbar weakness; able to lift limbs and neck against gravity, ambulatory without assistance.
- Grade 2
- Unable to lift limbs/neck against gravity, difficulty swallowing, or inability to ambulate independently.
- Grade 3
- Severe weakness causing reduced ventilatory function, but spontaneous respiration is preserved.
- Grade 4
- Complete paralysis; reflexes absent; ventilator dependent.
5.2. Monitoring Neuromuscular Weakness and Paralysis
5.2.1. Quantitative Neuromonitoring
5.2.2. Types of Neuromuscular Monitoring
- 1
- Healthy;
- 2
- Minor symptoms of neuropathy but capable of manual work;
- 3
- Able to walk without support of a stick but incapable of manual work;
- 4
- Able to walk with a stick;
- 5
- Confined to a bed or chair;
- 6
- Requiring assisted ventilation; or
- 7
- Dead.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williams, D.J.; Faiz, M.A.; Abela-Ridder, B.; Ainsworth, S.; Bulfone, T.C.; Nickerson, A.D.; Habib, A.G.; Junghanss, T.; Fan, H.W.; Turner, M.; et al. Strategy for a Globally Coordinated Response to a Priority Neglected Tropical Disease: Snakebite Envenoming. PLoS Negl. Trop. Dis. 2019, 13, e0007059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kularatne, S.A.M. Common Krait (Bungarus Caeruleus) Bite in Anuradhapura, Sri Lanka: A Prospective Clinical Study, 1996–1998. Postgrad. Med. J. 2002, 78, 276–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, H.T.; Höjer, J.; Du, N.T. Clinical Features of 60 Consecutive ICU-Treated Patients Envenomed by Bungarus Multicinctus. Southeast Asian J. Trop. Med. Public Health 2009, 40, 518–524. [Google Scholar] [PubMed]
- Kularatne, S.A.M.; Budagoda, B.D.S.S.; Gawarammana, I.B.; Kularatne, W.K.S. Epidemiology, Clinical Profile and Management Issues of Cobra (Naja Naja) Bites in Sri Lanka: First Authenticated Case Series. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Sano-Martins, I.S. Coagulopathy Following Lethal and Non-Lethal Envenoming of Humans by the South American Rattlesnake (Crotalus Durissus) in Brazil. QJM 2001, 94, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Isbister, G.K.; O’Leary, M.A.; Elliott, M.; Brown, S.G.A. Tiger Snake (Notechis spp.) Envenoming: Australian Snakebite Project (ASP-13). Med. J. Aust. 2012, 197, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Dart, R.C.; Hurlbut, K.M.; Garcia, R.; Boren, J. Validation of a Severity Score for the Assessment of Crotalid Snakebite. Ann. Emerg. Med. 1996, 27, 321–326. [Google Scholar] [CrossRef]
- Jaggi, O.P. Medicine in India: Modern Period; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Anderson, A.J.; Harvey, A.L. Effects of the Potassium Channel Blocking Dendrotoxins on Acetylcholine Release and Motor Nerve Terminal Activity. Br. J. Pharmacol. 1988, 93, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Ranawaka, U.K.; Lalloo, D.G.; de Silva, H.J. Neurotoxicity in Snakebite—The Limits of Our Knowledge. PLoS Negl. Trop. Dis. 2013, 7, e2302. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.; Hodgson, W.; Isbister, G. Antivenom for Neuromuscular Paralysis Resulting from Snake Envenoming. Toxins 2017, 9, 143. [Google Scholar] [CrossRef]
- Gupta, S.K.; Manhas, A.S.; Gupta, V.K.; Parihar, A. Neuroparalytic Syndrome Encountered with Snake Bite Poisoning. Neurol. India 1993, 41, 29–31. [Google Scholar]
- Connolly, S.; Trevett, A.J.; Nwokolo, N.C.; Lalloo, D.G.; Naraqi, S.; Mantle, D.; Schofield, I.S.; Fawcett, P.R.W.; Harris, J.B.; Warrell, D.A. Neuromuscular Effects of Papuan Taipan Snake Venom. Ann. Neurol. 1995, 38, 916–920. [Google Scholar] [CrossRef]
- Johnston, C.I.; O’Leary, M.A.; Brown, S.G.A.; Currie, B.J.; Halkidis, L.; Whitaker, R.; Close, B.; Isbister, G.K. Death Adder Envenoming Causes Neurotoxicity Not Reversed by Antivenom—Australian Snakebite Project (ASP-16). PLoS Negl. Trop. Dis. 2012, 6, e1841. [Google Scholar] [CrossRef] [Green Version]
- Kularatne, S.A.M. Epidemiology and Clinical Picture of the Russell’s Viper (Daboia russelii russelii) Bite in Anuradhapura, Sri Lanka: A Prospective Study of 336 Patients. Southeast Asian J. Trop. Med. Public Health 2003, 34, 855–862. [Google Scholar]
- Silva, A.; Maduwage, K.; Sedgwick, M.; Pilapitiya, S.; Weerawansa, P.; Dahanayaka, N.J.; Buckley, N.A.; Johnston, C.; Siribaddana, S.; Isbister, G.K. Neuromuscular Effects of Common Krait (Bungarus caeruleus) Envenoming in Sri Lanka. PLoS Negl. Trop. Dis. 2016, 10, e0004368. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, I.S.; Gandra, R.R.; Dhooria, S.; Aggarwal, A.N.; Prasad, K.T.; Muthu, V.; Sharma, N.; Agarwal, R. A randomised trial of adaptive support ventilation in patients with neuroparalytic snake envenomation. Br. J. Anaesth. 2022, 128, e232–e234. [Google Scholar] [CrossRef]
- Bhaumik, S.; Kallakuri, S.; Kaur, A.; Devarapalli, S.; Daniel, M. Mental Health Conditions after Snakebite: A Scoping Review. BMJ Glob. Health 2020, 5, e004131. [Google Scholar] [CrossRef]
- Dixon, R.W.; Harris, J.B. Nerve Terminal Damage by β-Bungarotoxin. Am. J. Pathol. 1999, 154, 447–455. [Google Scholar] [CrossRef]
- Logonder, U.; Križaj, I.; Rowan, E.G.; Harris, J.B. Neurotoxicity of Ammodytoxin A in the Envenoming Bites of Vipera ammodytes ammodytes. J. Neuropathol. Exp. Neurol. 2008, 67, 1011–1019. [Google Scholar] [CrossRef] [Green Version]
- Prasarnpun, S.; Walsh, J.; Harris, J.B. β-Bungarotoxin-Induced Depletion of Synaptic Vesicles at the Mammalian Neuromuscular Junction. Neuropharmacology 2004, 47, 304–314. [Google Scholar] [CrossRef]
- Prasarnpun, S.; Walsh, J.; Awad, S.S.; Harris, J.B. Envenoming Bites by Kraits: The Biological Basis of Treatment-Resistant Neuromuscular Paralysis. Brain 2005, 128, 2987–2996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eilers, H.; Schaeffer, E.; Bickler, P.E.; Forsayeth, J.R. Functional Deactivation of the Major Neuronal Nicotinic Receptor Caused by Nicotine and a Protein Kinase C-Dependent Mechanism. Mol. Pharmacol. 1997, 52, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, E.; Mbugua, P.M.; Rodriguez-Ithurralde, D. Fasciculins, Anticholinesterase Toxins from the Venom of the Green Mamba Dendroaspis angusticeps. J. Physiol. 1984, 79, 232–240. [Google Scholar]
- Kini, R.M. Structure-Function Relationships and Mechanism of Anticoagulant Phospholipase A2 Enzymes from Snake Venoms. Toxicon 2005, 45, 1147–1161. [Google Scholar] [CrossRef] [PubMed]
- Nirthanan, S.; Gwee, M.C.E. Three-Finger α-Neurotoxins and the Nicotinic Acetylcholine Receptor, Forty Years On. J. Pharmacol. Sci. 2004, 94, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Barber, C.M.; Isbister, G.K.; Hodgson, W.C. Alpha Neurotoxins. Toxicon 2013, 66, 47–58. [Google Scholar] [CrossRef]
- Walker, M.B. Case showing the Effect of Prostigmin on Myasthenia Gravis. Proc. R. Soc. Med. 1935, 28, 759–761. [Google Scholar] [CrossRef]
- Hristovska, A.M.; Duch, P.; Allingstrup, M.; Afshari, A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst. Rev. 2017, 8, CD012763. [Google Scholar] [CrossRef]
- Bickler, P.E. Amplification of Snake Venom Toxicity by Endogenous Signaling Pathways. Toxins 2020, 12, 68. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, R.N.; Sahni, A.L.; Chacko, K.A.; Vijay, K. Neostigmine in the Treatment of Elapidae Bites. J. Assoc. Physicians India 1972, 20, 503–509. [Google Scholar]
- Watt, G.; Meade, B.D.; Theakston, R.D.; Padre, L.P.; Tuazon, M.L.; Calubaquib, C.; Santiago, E.; Ranoa, C.P. Comparison of Tensilon and Antivenom for the Treatment of Cobra-Bite Paralysis. Trans. R. Soc. Trop. Med. Hyg. 1989, 83, 570–573. [Google Scholar] [CrossRef]
- Gatineau, E.; Lee, C.Y.; Fomageot, P.; Menez, A. Reversal of Snake Neurotoxin Binding to Mammalian Acetylcholine Receptor by Specific Antiserum. Eur. J. Biochem. 1988, 171, 535–539. [Google Scholar] [CrossRef]
- Anil, A.; Singh, S.; Bhalla, A.; Sharma, N.; Agarwal, R.; Simpson, I.D. Role of Neostigmine and Polyvalent Antivenom in Indian Common Krait (Bungarus caeruleus) Bite. J. Infect. Public Health 2010, 3, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.J.; Harvey, A.L.; Mbugua, P.M. Effects of fasciculin 2, an anticholinesterase polypeptide from green mamba venom, on neuromuscular transmission in mouse diaphragm preparations. Neurosci. Lett. 1985, 54, 123–128. [Google Scholar] [CrossRef]
- Silva, A.; Hodgson, W.; Isbister, G. Cross-Neutralisation of In Vitro Neurotoxicity of Asian and Australian Snake Neurotoxins and Venoms by Different Antivenoms. Toxins 2016, 8, 302. [Google Scholar] [CrossRef] [Green Version]
- Šribar, J.; Oberčkal, J.; Križaj, I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A(2): An update. Toxicon 2014, 89, 9–16. [Google Scholar] [CrossRef]
- Mitrakul, C.; Phancharoen, S.; Thisyakorn, C.; Dhamkrong-At, A.; Vongsrisart, K.; Futrakul, P.; Varavithya, C. Clinical Features of Neurotoxic Snake Bite and Response to Antivenom in 47 Children. Am. J. Trop. Med. Hyg. 1984, 33, 1258–1266. [Google Scholar] [CrossRef]
- Johnston, C.I.; Ryan, N.M.; O’Leary, M.A.; Brown, S.G.A.; Isbister, G.K. Australian Taipan (Oxyuranus spp.) Envenoming: Clinical Effects and Potential Benefits of Early Antivenom Therapy—Australian Snakebite Project (ASP-25). Clin. Toxicol. 2017, 55, 115–122. [Google Scholar] [CrossRef]
- Alirol, E.; Sharma, S.K.; Bawaskar, H.S.; Kuch, U.; Chappuis, F. Snake bite in South Asia: A review. PLoS Neg. Trop. Dis. 2010, 4, e603. [Google Scholar] [CrossRef] [Green Version]
- Laustsen, A.H.; Gutiérrez, J.M.; Knudsen, C.; Johansen, K.H.; Bermúdez-Méndez, E.; Cerni, F.A.; Jürgensen, J.A.; Ledsgaard, L.; Martos-Esteban, A.; Øhlenschlæger, M.; et al. Pros and Cons of Different Therapeutic Antibody Formats for Recombinant Antivenom Development. Toxicon 2018, 146, 151–175. [Google Scholar] [CrossRef]
- Silva, A.; Maduwage, K.; Sedgwick, M.; Pilapitiya, S.; Weerawansa, P.; Dahanayaka, N.J.; Buckley, N.A.; Siribaddana, S.; Isbister, G.K. Neurotoxicity in Russell’s viper (Daboia russelii) envenoming in Sri Lanka: A clinical and neurophysiological study. Clin. Toxicol. 2016, 54, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, C.; Laustsen, A.H. Recent Advances in Next Generation Snakebite Antivenoms. Trop. Med. Infect. Dis. 2018, 3, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, J.M.; Lewin, M.R.; Williams, D.J.; Lomonte, B. Varespladib (LY315920) and Methyl Varespladib (LY333013) Abrogate or Delay Lethality Induced by Presynaptically Acting Neurotoxic Snake Venoms. Toxins 2020, 12, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.H.; Lingam, T.M.C.; Tan, K.Y. Varespladib (LY315920) Rescued Mice from Fatal Neurotoxicity Caused by Venoms of Five Major Asiatic Kraits (Bungarus spp.) in an Experimental Envenoming and Rescue Model. Acta Trop. 2022, 227, 106289. [Google Scholar] [CrossRef] [PubMed]
- Senji Laxme, R.R.; Khochare, S.; de Souza, H.F.; Ahuja, B.; Suranse, V.; Martin, G.; Whitaker, R.; Sunagar, K. Beyond the ‘Big Four’: Venom Profiling of the Medically Important yet Neglected Indian Snakes Reveals Disturbing Antivenom Deficiencies. PLoS Negl. Trop. Dis. 2019, 13, e0007899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Guidelines for the Management of Snakebites 2ed. 2016. Available online: https://www.who.int/publications/i/item/9789290225300 (accessed on 8 December 2022).
- Standard Treatment Guidelines—Management of Snake Bite. Available online: https://nhm.gov.in/images/pdf/guidelines/nrhm-guidelines/stg/Snakebite_Full.pdf (accessed on 17 August 2022).
- Brull, S.J.; Murphy, G.S. Residual Neuromuscular Block. Anesth. Analg. 2010, 111, 129–140. [Google Scholar] [CrossRef]
- Cammu, G. Residual Neuromuscular Blockade and Postoperative Pulmonary Complications: What Does the Recent Evidence Demonstrate? Curr. Anesthesiol. Rep. 2020, 10, 131–136. [Google Scholar] [CrossRef]
- Weigel, W.A.; Williams, B.L.; Hanson, N.A.; Blackmore, C.C.; Johnson, R.L.; Nissen, G.M.; James, A.B.; Strodtbeck, W.M. Quantitative Neuromuscular Monitoring in Clinical Practice: A Professional Practice Change Initiative. Anesthesiology 2022, 136, 901–915. [Google Scholar] [CrossRef]
- Wieske, L.; van Hest, R.M.; Witteveen, E.; Verhamme, C.; Schultz, M.J.; van Schaik, I.N.; Horn, J. Is Gentamicin Affecting the Neuromuscular System of Critically Ill Patients? Intensive Care Med. 2015, 41, 727–728. [Google Scholar] [CrossRef]
- Martyn, J.A.J.; Fagerlund, M.J.; Eriksson, L.I. Basic Principles of Neuromuscular Transmission. Anaesthesia 2009, 64, 1–9. [Google Scholar] [CrossRef]
- Nemes, R.; Lengyel, S.; Nagy, G.; Hampton, D.R.; Gray, M.; Renew, J.R.; Tassonyi, E.; Fülesdi, B.; Brull, S.J. Ipsilateral and Simultaneous Comparison of Responses from Acceleromyography- and Electromyography-Based Neuromuscular Monitors. Anesthesiology 2021, 135, 597–611. [Google Scholar] [CrossRef]
- Abouyannis, M.; Aggarwal, D.; Lalloo, D.G.; Casewell, N.R.; Hamaluba, M.; Esmail, H. Clinical Outcomes and Outcome Measurement Tools Reported in Randomised Controlled Trials of Treatment for Snakebite Envenoming: A Systematic Review. PLoS Negl. Trop. Dis. 2021, 15, e0009589. [Google Scholar] [CrossRef]
- Suryanarayana, G.; Rameshkumar, R.; Mahadevan, S. Retrospective Hospital-Based Cohort Study on Risk Factors of Poor Outcome in Pediatric Snake Envenomation. J. Trop. Pediatr. 2021, 67, fmaa078. [Google Scholar] [CrossRef]
- Tariang, D.D.; Philip, P.J.; Alexander, G.; Macaden, S.; Jeyaseelan, L.; Peter, J.V.; Cherian, A.M. Randomized Controlled Trial on the Effective Dose of Anti-Snake Venom in Cases of Snake Bite with Systemic Envenomation. J. Assoc. Physicians India 1999, 47, 369–371. [Google Scholar]
- Blackwood, B.; Ringrow, S.; Clarke, M.; Marshall, J.C.; Connolly, B.; Rose, L.; McAuley, D.F. A Core Outcome Set for Critical Care Ventilation Trials. Crit. Care Med. 2019, 47, 1324–1331. [Google Scholar] [CrossRef]
- Hughes, R.A.; Swan, A.V.; van Doorn, P.A. Intravenous Immunoglobulin for Guillain-Barré Syndrome. Cochrane Database Syst. Rev. 2014, 2019. [Google Scholar] [CrossRef]
- Trevett, A.J.; Lalloo, D.G.; Nwokolo, N.C.; Naraqi, S.; Kevau, I.H.; Theakston, R.D.G.; Warrell, D.A. The Efficacy of Antivenom in the Treatment of Bites by the Papuan Taipan (Oxyuranus scutellatus canni). Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 322–325. [Google Scholar] [CrossRef]
- Neuromuscular Transmission Failure Due to Common Krait (Bungarus caeruleus) Envenomation. Muscle Nerve 1999, 22, 1637–1643. [CrossRef]
Depolarizing Neuromuscular Blockade | |||
Drug/Venom type | Succinylcholine | β-toxin (PLA2) | Fasciculins |
Nicotinic receptor (nAChR) effects | Hyperactivation followed by desensitization and inactivation | Hyperactivation followed by desensitization and inactivation | Hyperactivation caused by AchE inhibition |
Post synapse/ Muscle | Depolarization, fasciculations | Depolarization, fasciculations | Depolarization |
Effect duration | Short, may progress to long | Long | Long |
Fasciculation | Yes | Maybe | Yes |
Reversal with neostigmine? | No, may increase block | No, may increase block | May exacerbate block |
Non-Depolarizing Neuromuscular Blockade | |||
Drug/Venom type | Nondepolarizing neuromuscular blockers (NDNMB) (e.g., curare, rocuronium, vecuronium) | α- or “3FTxs” (e.g., α-bungarotoxin) | Botulinum toxin |
Presynaptic effects | None | None | Vesicle depletion |
Nicotinic receptor (nAChR) effects | High-affinity competitive blocker | High-affinity competitive blocker | none |
Postsynaptic muscle membrane | none | None | none |
Effect duration | Long, drug dependent | Long | long |
Fasciculation | No | No | Rare |
Reversal with Neostigmine? | Yes | Likely venom dependent | Yes |
Clinical Exam | Example Assessments | Laboratory Findings | |
---|---|---|---|
Cranial Nerve Palsies | Ptosis | Photographs | - |
Decreased visual acuity | Vision chart | - | |
Tongue protrusion weakness | Clinical assessment | - | |
Unable to support head for 5 s | Time to loss of unaided support when sitting | - | |
Upper airway obstruction | Masseter ToF, chest movement monitors (e.g., Respitrace™), capnography | Hypercarbia from obstructed CO2 exchange, hypoxemia with pulse oximetry | |
Peripheral Muscle Weakness | Fasciculations/weakness in any peripheral muscle group | EMG (weakness, fasciculations), acceleromyography (weakness), laboratories | Impaired neurotransmission, electrolyte abnormalities |
Grip strength decreased | Grip strength meter, neuromuscular monitoring of ulnar nerve, ToF < 80% | - | |
Respiratory muscle weakness/hypoventilation | Inspiratory force, spirometry (minute ventilation, respiratory rate) | Hypercarbia, acidosis, hypoxemia | |
SIMV etc. to more complete pressure or total ventilatory support | Changes in support requirements | Hypercarbia, acidosis, hypoxemia | |
Unassisted breathing on ventilator | Changes in support requirements | Correction of hypercarbia, acidosis, hypoxemia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bickler, P.E.; Abouyannis, M.; Bhalla, A.; Lewin, M.R. Neuromuscular Weakness and Paralysis Produced by Snakebite Envenoming: Mechanisms and Proposed Standards for Clinical Assessment. Toxins 2023, 15, 49. https://doi.org/10.3390/toxins15010049
Bickler PE, Abouyannis M, Bhalla A, Lewin MR. Neuromuscular Weakness and Paralysis Produced by Snakebite Envenoming: Mechanisms and Proposed Standards for Clinical Assessment. Toxins. 2023; 15(1):49. https://doi.org/10.3390/toxins15010049
Chicago/Turabian StyleBickler, Philip E., Michael Abouyannis, Ashish Bhalla, and Matthew R. Lewin. 2023. "Neuromuscular Weakness and Paralysis Produced by Snakebite Envenoming: Mechanisms and Proposed Standards for Clinical Assessment" Toxins 15, no. 1: 49. https://doi.org/10.3390/toxins15010049
APA StyleBickler, P. E., Abouyannis, M., Bhalla, A., & Lewin, M. R. (2023). Neuromuscular Weakness and Paralysis Produced by Snakebite Envenoming: Mechanisms and Proposed Standards for Clinical Assessment. Toxins, 15(1), 49. https://doi.org/10.3390/toxins15010049