Virulence during Newcastle Disease Viruses Cross Species Adaptation
<p>Amino acid changes in viruses of different genotypes. Excerpts from Ferreira, H.L.; Taylor, T.L.; Dimitrov, K.M.; Sabra, M.; Afonso, C.L.; Suarez, D.L. Virulent Newcastle disease viruses from chicken origin are more pathogenic and transmissible to chickens than viruses normally maintained in wild birds [<a href="#B55-viruses-13-00110" class="html-bibr">55</a>].</p> "> Figure 2
<p>Codon usage adaptation in genomes of class I and II viruses. Excerpts from Figure 2 in Taylor, T.L.; Dimitrov, K.M.; Afonso, C.L. Genome-wide analysis reveals class and gene-specific codon usage adaptation in avian paramyxoviruses 1. [<a href="#B62-viruses-13-00110" class="html-bibr">62</a>]. Avian paramyxoviruses 1 display differences in codon usage between the three transcriptional genomic regions. A) The average codon adaptation index (CAI) value for the complete genome and each genomic region (NC-PHO-M, F-HN, and POL) for class I (<span class="html-italic">n</span> = 29) and class II (<span class="html-italic">n</span> = 259) viruses was determined using <span class="html-italic">Gallus gallus</span> as a reference genome. The complete genome result is in black, NC-PHO-M is in blue, F-HN is in red, and POL is in green. Standard error bars are shown, and statistically significant differences between the same regions between classes are shown (Pb 0.01) with corresponding letters.</p> "> Figure 3
<p>Inter-host transmission of Newcastle disease viruses (NDV). Excerpts from Figure 2 in Hicks, J.T.; Dimitrov, K.M.; Afonso, C.L.; Ramey, A.M.; Bahl, J. Global phylodynamic analysis of avian paramyxovirus-1 provides evidence of inter-host transmission and intercontinental spatial diffusion [<a href="#B64-viruses-13-00110" class="html-bibr">64</a>] Class I and class II chord diagrams representing the fully resolved transition matrix between host orders. Chord width between source and sink host state is proportional to the median transition rate per year. Dark gray chords are statistically supported (BF > 3.0). Colors correspond to host order: Anseriformes—red, Charadriiformes—green, domestic chickens—blue, Columbiformes—brown, other Galliformes—yellow, Psittaciformes—orange, Suliformes—purple.</p> "> Figure 4
<p>Molecular phylogenetic analysis of NDVs representing historical and current genotypes by the maximum likelihood method. The evolutionary history was inferred by using the maximum-likelihood method based on the general time reversible model. The tree with the highest log likelihood (−32,597.46) is shown. Virus description in the tree includes genotype classification, accession number, host, year of isolation and country as described by Dimitrov [<a href="#B22-viruses-13-00110" class="html-bibr">22</a>]. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying neighbor-join and BioNJ algorithms to a matrix of pairwise distances estimated using the maximum composite likelihood (MCL) approach and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 146 nucleotide sequences. Codon positions included were 1st+2nd+3rd+noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1653 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [<a href="#B69-viruses-13-00110" class="html-bibr">69</a>].</p> "> Figure 5
<p>Pathogenesis comparison between vvNDV and vnNDV. (<b>A</b>) Excerpts from Brown, C.; King, D.J.; Seal, B.S. Pathogenesis of Newcastle Disease in Chickens Experimentally Infected with Viruses of Different Virulence. [<a href="#B16-viruses-13-00110" class="html-bibr">16</a>]. (<b>B</b>) Excerpts from Piacenti, A.M.; King, D.J.; Seal, B.S.; Zhang, J.; Brown, C.C. Pathogenesis of Newcastle disease in commercial and specific pathogen-free turkeys experimentally infected with isolates of different virulence [<a href="#B73-viruses-13-00110" class="html-bibr">73</a>].</p> "> Figure 5 Cont.
<p>Pathogenesis comparison between vvNDV and vnNDV. (<b>A</b>) Excerpts from Brown, C.; King, D.J.; Seal, B.S. Pathogenesis of Newcastle Disease in Chickens Experimentally Infected with Viruses of Different Virulence. [<a href="#B16-viruses-13-00110" class="html-bibr">16</a>]. (<b>B</b>) Excerpts from Piacenti, A.M.; King, D.J.; Seal, B.S.; Zhang, J.; Brown, C.C. Pathogenesis of Newcastle disease in commercial and specific pathogen-free turkeys experimentally infected with isolates of different virulence [<a href="#B73-viruses-13-00110" class="html-bibr">73</a>].</p> "> Figure 6
<p>Comparison of the capacity for virulence, replication and shedding between chicken and wild bird isolates. Excerpts from Figures 1 and 3 in Ferreira, H.L.; Taylor, T.L.; Dimitrov, K.M.; Sabra, M.; Afonso, C.L.; Suarez, D.L. Virulent Newcastle disease viruses from the chicken origin are more pathogenic and transmissible to chickens than viruses normally maintained in wild birds [<a href="#B55-viruses-13-00110" class="html-bibr">55</a>]. (<b>A</b>) Survival curves of directly inoculated birds. Chickens were separated into 3 groups for each virus and inoculated with a low, medium, and high dose of the five NDV strains (PE08, EG11, TZ12, CO10, PI13). Mortality in each experimental group was followed daily over 14 days. No common letters indicate significant differences (<span class="html-italic">p</span> < 0.5). (<b>B</b>) Virus shedding is directly inoculated birds after inoculation with chicken- and wild bird-origin NDV. NDV titers were estimated in both oropharyngeal (OP) or cloacal swab (CL) swabs of directly inoculated birds with three different doses of NDV strains at 2, 4, and 7 DPI. The detection limit of the different RRT-PCR assays targeting the NDV strains varied between 1.5 and 1.7 log10EID50/mL and are shown as dotted lines on the Y-axis. Mean and standard deviation of the mean for positive swabs at each time point are shown as bars. No common letters (A or B) differ significantly (<span class="html-italic">p</span> < 0.05) when comparing oropharyngeal or cloacal swab samples from the different viruses with the same infectious dose and same sampling point. Non-detected swabs were added below the limit of detection for each virus.</p> ">
Abstract
:1. Introduction
2. Review of Supporting Data
2.1. NDVs Uniqueness to Study Virulence as a Host Adaptation Mechanism
2.2. Types of Genetic Changes Seen during NDV Evolution
2.3. Modulation of Virulence during Host Adaptation
2.4. Role of Host Associated Evolutionary Factors
3. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Kaleta, E.F.; Baldauf, C. Newcastle disease in free-living and pet birds. In Newcastle Disease; Alexander, D.J., Ed.; Kluwer Academic Publishers: Boston, MA, USA, 1988; pp. 197–246. [Google Scholar]
- Miller, P.J.; Koch, G. Newcastle disease. In Diseases of Poultry; Swayne, D.E., Glisson, J.R., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 89–138. [Google Scholar]
- Brown, V.R.; Bevins, S.N. A Review of Virulent Newcastle Disease Viruses in the United States and the Role of Wild Birds in Viral Persistence and Spread. Vet. Res. 2017, 48, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.S.; Garcia-Sastre, A.; Cros, J.F.; Basler, C.F.; Palese, P. Newcastle Disease Virus V Protein Is a Determinant of Host Range Restriction. J. Virol. 2003, 77, 9522–9532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.; Hong, S.H.; Choi, D.; Choi, K.S.; Kang, S.; Kim, I.H. Overexpression of Newcastle Disease Virus (NDV) V Protein Enhances NDV Production Kinetics in Chicken Embryo Fibroblasts. Appl. Microbiol. Biotechnol. 2010, 85, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Krishnamurthy, S.; Panda, A.; Samal, S.K. Newcastle Disease Virus V Protein Is Associated with Viral Pathogenesis and Functions as an Alpha Interferon Antagonist. J. Virol. 2003, 77, 8676–8685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mebatsion, T.; Verstegen, S.; de Vaan, L.T.C.; Römer-Oberdörfer, A.; Schrier, C.C. A Recombinant Newcastle Disease Virus With Low-Level V Protein Expression Is Immunogenic and Lacks Pathogenicity for Chicken Embryos. J. Virol. 2001, 75, 420–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamares, J.G.; Elankumaran, S.; Samal, S.K.; Iorio, R.M. The Interferon Antagonistic Activities of the V Proteins from Two Strains of Newcastle Disease Virus Correlate with Their Known Virulence Properties. Virus Res. 2010, 147, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.L.; Gandham, R.K.; Subbiah, M. Molecular Evolution and Genetic Variations of V and W Proteins Derived by RNA Editing in Avian Paramyxoviruses. Sci. Rep. 2020, 10, 9532. [Google Scholar] [CrossRef]
- Swanson, K.; Wen, X.; Leser, G.P.; Paterson, R.G.; Lamb, R.A.; Jardetzky, T.S. Structure of the Newcastle Disease Virus F Protein in the Post-Fusion Conformation. Virology 2010, 402, 372–379. [Google Scholar] [CrossRef]
- Panda, A.; Huang, Z.; Elankumaran, S.; Rockemann, D.D.; Samal, S.K. Role of Fusion Protein Cleavage Site in the Virulence of Newcastle Disease Virus. Microb. Pathog. 2004, 36, 1–10. [Google Scholar] [CrossRef]
- Reitter, J.N.; Sergel, T.; Morrison, T.G. Mutational Analysis of the Leucine Zipper Motif in the Newcastle Disease Virus Fusion Protein. J. Virol. 1995, 69, 5995–6004. [Google Scholar] [CrossRef] [Green Version]
- Cornax, I.; Diel, D.G.; Rue, C.A.; Estevez, C.; Yu, Q.; Miller, P.J.; Afonso, C.L. Newcastle Disease Virus Fusion and Haemagglutinin-Neuraminidase Proteins Contribute to Its Macrophage Host Range. J. Gen. Virol. 2013, 94, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Chambers, P.; Nesbit, M.; Yusoff, K.; Millar, N.S.; Samson, A.C.; Emmerson, P.T. Location of a Neutralizing Epitope for the Haemagglutinin-Neuraminidase Glycoprotein of Newcastle Disease Virus. J. Gen. Virol. 1988, 69, 2115–2122. [Google Scholar] [CrossRef] [PubMed]
- Gravel, K.A.; McGinnes, L.W.; Reitter, J.; Morrison, T.G. The Transmembrane Domain Sequence Affects the Structure and Function of the Newcastle Disease Virus Fusion Protein. J. Virol. 2011, 85, 3486–3497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.C.; King, D.J.; Seal, B.S. Comparison of Pathology-Based Techniques for Detection of Viscerotropic Velogenic Newcastle Disease Virus in Chickens. J. Comp. Pathol. 1999, 120, 383–389. [Google Scholar] [CrossRef]
- Nagai, Y.; Klenk, H.D.; Rott, R. Proteolytic Cleavage of the Viral Glycoproteins and Its Significance for the Virulence of Newcastle Disease Virus. Virology 1976, 72, 494–508. [Google Scholar] [CrossRef]
- Moura, V.M.B.D.; Susta, L.; Cardenas-Garcia, S.; Stanton, J.B.; Miller, P.J.; Afonso, C.L.; Brown, C.C. Neuropathogenic Capacity of Lentogenic, Mesogenic, and Velogenic Newcastle Disease Virus Strains in Day-Old Chickens. Vet. Pathol. 2016, 53, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Cattoli, G.; Susta, L.; Terregino, C.; Brown, C. Newcastle Disease: A Review of Field Recognition and Current Methods of Laboratory Detection. J. Vet. Diagn. Investig. 2011, 23, 637–656. [Google Scholar] [CrossRef] [Green Version]
- Afonso, C.L.; Miller, P.J. Newcastle disease virus (velogens). In Manual of Security Senstive Microbes and Toxins; Liu, D., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 689–702. [Google Scholar]
- Dimitrov, K.M.; Ramey, A.M.; Qiu, X.; Bahl, J.; Afonso, C.L. Temporal, Geographic, and Host Distribution of Avian Paramyxovirus 1 (Newcastle Disease Virus). Infect. Genet. Evol. 2016, 39, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, F.X.; Brown, I.H.; Choi, K.S.; Chvala, I.; et al. Updated Unified Phylogenetic Classification System and Revised Nomenclature for Newcastle Disease Virus. Infect. Genet. Evol. 2019, 103917. [Google Scholar] [CrossRef]
- Kim, S.J.; Spradbrow, P.B. Some properties of lentogenic Australian Newcastle disease virus. Vet. Microbiol. 1978, 3, 129–141. [Google Scholar] [CrossRef]
- Kim, L.M.; King, D.J.; Curry, P.E.; Suarez, D.L.; Swayne, D.E.; Stallknecht, D.E.; Slemons, R.D.; Pedersen, J.C.; Senne, D.A.; Winker, K.; et al. Phylogenetic Diversity among Low-Virulence Newcastle Disease Viruses from Waterfowl and Shorebirds and Comparison of Genotype Distributions to Those of Poultry-Origin Isolates. J. Virol. 2007, 81, 12641–12653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramey, A.B.; Reeves, H.; Ogawa, H.; Ip, K.; Imai, V.; Bui, E.; Yamaguchi, N.; Silko, N.Y.; Afonso, C.L. Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread. Arch. Virol. 2013, 158, 2495–2503. [Google Scholar] [PubMed]
- Zhang, P.; Xie, G.; Liu, X.; Ai, L.; Chen, Y.; Meng, X.; Bi, Y.; Chen, J.; Sun, Y.; Stoeger, T.; et al. High Genetic Diversity of Newcastle Disease Virus in Wild and Domestic Birds in Northeastern China from 2013 to 2015 Reveals Potential Epidemic Trends. Appl. Environ. Microbiol. 2015, 82, 1530–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzyka, D.; Pantin-Jackwood, M.; Stegniy, B.; Rula, O.; Bolotin, V.; Stegniy, A.; Gerilovych, A.; Shutchenko, P.; Stegniy, M.; Koshelev, V.; et al. Wild Bird Surveillance for Avian Paramyxoviruses in the Azov-Black Sea Region of Ukraine (2006 to 2011) Reveals Epidemiological Connections with Europe and Africa. Appl. Environ. Microbiol. 2014, 80, 5427–5438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, P.J.; Afonso, C.L.; El Attrache, J.; Dorsey, K.M.; Courtney, S.C.; Guo, Z.; Kapczynski, D.R. Effects of Newcastle Disease Virus Vaccine Antibodies on the Shedding and Transmission of Challenge Viruses. Dev. Comp. Immunol. 2013, 41, 505–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, P.J.; Estevez, C.; Yu, Q.; Suarez, D.L.; King, D.J. Comparison of Viral Shedding Following Vaccination with Inactivated and Live Newcastle Disease Vaccines Formulated with Wild-Type and Recombinant Viruses. Avian Dis. 2009, 53, 39–49. [Google Scholar] [CrossRef]
- Gillete, K.G.; Coria, M.F.; Boney, W.A.; Stone, H.D. Viscerotropic velogenic Newcastle disease in turkeys: Virus shedding and persistence of infection in susceptible and vaccinated poults. Avian Dis. 1975, 19, 31–39. [Google Scholar] [CrossRef]
- Heckert, R.A.; Collins, M.S.; Manvell, R.J.; Strong, I.; Pearson, J.E.; Alexander, D.J. Comparison of Newcastle Disease Viruses Isolated from Cormorants in Canada and the USA in 1975, 1990 and 1992. Can. J. Vet. Res. 1996, 60, 50–54. [Google Scholar] [PubMed]
- Kuiken, T. Review of Newcastle Disease in Cormorants. Waterbirds 1999, 22, 333–347. [Google Scholar] [CrossRef]
- Weingartl, H.M.; Riva, J.; Kumthekar, P. Molecular Characterization of Avian Paramyxovirus 1 Isolates Collected from Cormorants in Canada from 1995 to 2000. J. Clin. Microbiol. 2003, 41, 1280–1284. [Google Scholar] [CrossRef] [Green Version]
- Diel, D.G.; Miller, P.J.; Wolf, P.C.; Mickley, R.M.; Musante, A.R.; Emanueli, D.C.; Shively, K.J.; Pedersen, K.; Afonso, C.L. Characterization of Newcastle Disease Viruses Isolated from Cormorant and Gull Species in the United States in 2010. Avian Dis. 2012, 56, 128–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, L.M.; King, D.J.; Guzman, H.; Tesh, R.B.; Travassos Da Rosa, A.P.A.; Bueno, R., Jr.; Dennett, J.A.; Afonso, C.L. Biological and Phylogenetic Characterization of Pigeon Paramyxovirus Serotype 1 Circulating in Wild North American Pigeons and Doves. J. Clin. Microbiol. 2008, 46, 3303–3310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meulemans, G.; van den Berg, T.P.; Decaesstecker, M.; Boschmans, M. Evolution of Pigeon Newcastle Disease Virus Strains. Avian Pathol. 2002, 31, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Isidoro-Ayza, M.; Afonso, C.L.; Stanton, J.B.; Knowles, S.; Ip, H.S.; White, C.L.; Fenton, H.; Ruder, M.G.; Dolinski, A.C.; Lankton, J. Natural Infections With Pigeon Paramyxovirus Serotype 1: Pathologic Changes in Eurasian Collared-Doves (Streptopelia Decaocto) and Rock Pigeons (Columba Livia) in the United States. Vet. Pathol. 2017, 54, 695–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abolnik, C.; Gerdes, G.H.; Kitching, J.; Swanepoel, S.; Romito, M.; Bisschop, S.P.R. Characterization of Pigeon Paramyxoviruses (Newcastle Disease Virus) Isolated in South Africa from 2001 to 2006. Onderstepoort J. Vet. Res. 2008, 75, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Aldous, E.W.; Fuller, C.M.; Ridgeon, J.H.; Irvine, R.M.; Alexander, D.J.; Brown, I.H. The Evolution of Pigeon Paramyxovirus Type 1 (PPMV-1) in Great Britain: A Molecular Epidemiological Study. Transbound. Emerg. Dis. 2014, 61, 134–139. [Google Scholar] [CrossRef]
- Sabra, M.; Dimitrov, K.M.; Goraichuk, I.V.; Wajid, A.; Sharma, P.; Williams-Coplin, D.; Basharat, A.; Rehmani, S.F.; Muzyka, D.V.; Miller, P.J.; et al. Phylogenetic Assessment Reveals Continuous Evolution and Circulation of Pigeon-Derived Virulent Avian Avulaviruses 1 in Eastern Europe, Asia, and Africa. BMC Vet. Res. 2017, 13, 291. [Google Scholar] [CrossRef] [Green Version]
- Boney, W.A., Jr. The Isolation of a Neurotropic Strain (GB) of Newcastle Disease Virus. Southwest. Vet. 1951, 5, 19–21. [Google Scholar]
- Paldurai, A.; Kumar, S.; Nayak, B.; Samal, S.K. Complete Genome Sequence of Highly Virulent Neurotropic Newcastle Disease Virus Strain Texas GB. Virus Genes 2010, 41, 67–72. [Google Scholar] [CrossRef]
- Banerjee, M.; Reed, W.M.; Fitzgerald, S.D.; Panigraphy, B. Neurotropic Velogenic Newcastle Disease in Cormorants in Michigan: Pathology and Virus Characterization. Avian Dis. 1994, 38, 873–878. [Google Scholar] [CrossRef]
- Tixier-Boichard, M.; Bed’hom, B.; Rognon, X. Chicken Domestication: From Archeology to Genomics. Comptes Rendus Biol. 2011, 334, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.; Spindler, K.; Horodyski, F.; Grabau, E.; Nichol, S.; VandePol, S. Rapid Evolution of RNA Genomes. Science 1982, 215, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Domingo, E.; Holland, J.J. RNA Virus Mutations and Fitness for Survival. Annu. Rev. Microbiol. 1997, 51, 151–178. [Google Scholar] [CrossRef]
- Peeters, B.P.H.; Gruijthuijsen, Y.K.; de Leeuw, O.S.; Gielkens, A.L.J. Genome Replication of Newcastle Disease Virus: Involvement of the Rule-of-Six. Arch. Virol. 2000, 145, 1829–1845. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; Decanini, E.L.; Afonso, C.L. Newcastle Disease: Evolution of Genotypes and the Related Diagnostic Challenges. Infect. Genet. Evol. 2010, 10, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; Kim, L.M.; Ip, H.S.; Afonso, C.L. Evolutionary Dynamics of Newcastle Disease Virus. Virology 2009, 391, 64–72. [Google Scholar] [CrossRef] [Green Version]
- de Leeuw, O.S.; Koch, G.; Hartog, L.; Ravenshorst, N.; Peeters, B.P.H. Virulence of Newcastle Disease Virus Is Determined by the Cleavage Site of the Fusion Protein and by Both the Stem Region and Globular Head of the Haemagglutinin-Neuraminidase Protein. J. Gen. Virol. 2005, 86, 1759–1769. [Google Scholar] [CrossRef]
- Samal, S.; Kumar, S.; Khattar, S.K.; Samal, S.K. A Single Amino Acid Change, Q114R, in the Cleavage-Site Sequence of Newcastle Disease Virus Fusion Protein Attenuates Viral Replication and Pathogenicity. J. Gen. Virol. 2011, 92, 2333–2338. [Google Scholar] [CrossRef]
- Pollard, D. Newcastle Disease Outbreak in Australia. World Poult. 1999, 15, 36–37. [Google Scholar]
- Kirkland, P.D. Virulent Newcastle Disease Virus in Australia: In Through the “Back Door”. Aust. Vet. J. 2000, 78, 331–333. [Google Scholar] [CrossRef]
- Gu, M.; Liu, W.; Xu, L.; Cao, Y.; Yao, C.; Hu, S.; Liu, X. Positive Selection in the Hemagglutinin-Neuraminidase Gene of Newcastle Disease Virus and Its Effect on Vaccine Efficacy. Virol. J. 2011, 8, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, H.L.; Taylor, T.L.; Dimitrov, K.M.; Sabra, M.; Afonso, C.L.; Suarez, D.L. Virulent Newcastle Disease Viruses from Chicken Origin Are More Pathogenic and Transmissible to Chickens than Viruses Normally Maintained in Wild Birds. Vet. Microbiol. 2019, 235, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-H.; Kwon, H.-J.; Kim, T.-E.; Kim, J.-H.; Yoo, H.-S.; Kim, S.-J. Variation of a Newcastle Disease Virus Hemagglutinin-Neuraminidase Linear Epitope. J. Clin. Microbiol. 2008, 46, 1541–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, J.P.; Fulton, R.E.; Siddiqui, Y.M. Epitope Specificity of Monoclonal Antibodies against Newcastle Disease Virus: Competitive Fluorogenic Enzyme Immunoassay. Hybridoma 1992, 11, 829–836. [Google Scholar] [CrossRef]
- Hu, S.; Wang, T.; Liu, Y.; Meng, C.; Wang, X.; Wu, Y.; Liu, X. Identification of a Variable Epitope on the Newcastle Disease Virus Hemagglutinin-Neuraminidase Protein. Vet. Microbiol. 2010, 140, 92–97. [Google Scholar] [CrossRef]
- Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon Bias and Heterologous Protein Expression. Trends Biotechnol. 2004, 22, 346–353. [Google Scholar] [CrossRef]
- Yang, Z.; Nielsen, R. Codon-Substitution Models for Detecting Molecular Adaptation at Individual Sites along Specific Lineages. Mol. Biol. Evol. 2002, 19, 908–917. [Google Scholar] [CrossRef] [Green Version]
- Bielawski, J.P.; Yang, Z. A Maximum Likelihood Method for Detecting Functional Divergence at Individual Codon Sites, with Application to Gene Family Evolution. J. Mol. Evol. 2004, 59, 121–132. [Google Scholar] [CrossRef]
- Taylor, T.L.; Dimitrov, K.M.; Afonso, C.L. Genome-Wide Analysis Reveals Class and Gene Specific Codon Usage Adaptation in Avian Paramyxoviruses 1. Infect. Genet. Evol. 2017, 50, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- Hicks, J.T.; Dimitrov, K.M.; Afonso, C.L.; Ramey, A.M.; Bahl, J. Global Phylodynamic Analysis of Avian Paramyxovirus-1 Provides Evidence of Inter-Host Transmission and Intercontinental Spatial Diffusion. BMC Evol. Biol 2019, 19, 108. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.J.; Campbell, G.; Manvell, R.J.; Collins, M.S.; Parsons, G.; McNulty, M.S. Characterisation of an Antigenically Unusual Virus Responsible for Two Outbreaks of Newcastle Disease in the Republic of Ireland in 1990. Vet. Rec. 1992, 130, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Abolnik, C.; Horner, R.F.; Maharaj, R.; Viljoen, G.J. Characterization of a Pigeon Paramyxovirus (PPMV-1) Isolated from Chickens in South Africa. Onderstepoort J. Vet. Res. 2004, 71, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Meulemans, G.; Gonze, M.; Carlier, M.C.; Petit, P.; Burny, A.; Long, L.E. Pathogenicity of Antigenic Variants of Newcastle Disease Virus Italian Strain Selected with Monoclonal Antibodies. Ann. Rech Vet. 1987, 18, 371–374. [Google Scholar]
- Alexander, D.J.; Russell, P.H.; Parsons, G.; Elzein, E.M.E.A.; Ballouh, A.; Cernik, K.; Engstrom, B.; Fevereiro, M.; Fleury, H.J.A.; Guittet, M.; et al. Antigenic and Biological Characterisation of Avian Paramyxovirus Type I Isolates from Pigeons—An International Collaborative Study. Avian Pathol. 1985, 14, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0. Molecular Biology and Evolution. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Glaser, L.C.; Barker, I.K.; Weseloh, D.V.C.; Ludwig, J.; Windingstad, R.M.; Key, D.W.; Bollinger, T.K. The 1992 Epizootic of Newcastle Disease in Double-Crested Cormorants in North America. J. Wildl. Dis. 1999, 35, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Rue, C.A.; Susta, L.; Brown, C.C.; Pasick, J.M.; Swafford, S.R.; Wolf, P.C.; Killian, M.L.; Pedersen, J.C.; Miller, P.J.; Afonso, C.L. Evolutionary Changes Affecting Rapid Identification of 2008 Newcastle Disease Viruses Isolated from Double-Crested Cormorants. J. Clin. Microbiol. 2010, 48, 2440–2448. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; King, D.J.; Seal, B.S. Pathogenesis of Newcastle Disease in Chickens Experimentally Infected With Viruses of Different Virulence. Vet. Pathol. 1999, 36, 125–132. [Google Scholar] [CrossRef]
- Piacenti, A.M.; King, D.J.; Seal, B.S.; Zhang, J.; Brown, C.C. Pathogenesis of Newcastle Disease in Commercial and Specific Pathogen-Free Turkeys Experimentally Infected with Isolates of Different Virulence. Vet. Pathol. 2006, 43, 168–178. [Google Scholar] [CrossRef]
- Pandarangga, P.; Brown, C.C.; Miller, P.J.; Haddas, R.; Rehmani, S.F.; Afonso, C.L.; Susta, L. Pathogenesis of New Strains of Newcastle Disease Virus From Israel and Pakistan. Vet. Pathol. 2016, 53, 792–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakamatsu, N.; King, D.J.; Kapczynski, D.R.; Seal, B.S.; Brown, C.C. Experimental Pathogenesis for Chickens, Turkeys, and Pigeons of Exotic Newcastle Disease Virus from an Outbreak in California during 2002–2003. Vet. Pathol. 2006, 43, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Absalón, A.E.; Cortés-Espinosa, D.V.; Lucio, E.; Miller, P.J.; Afonso, C.L. Epidemiology, Control, and Prevention of Newcastle Disease in Endemic Regions: Latin America. Trop. Anim. Health Prod. 2019, 51, 1033–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayala, A.J.; Dimitrov, K.M.; Becker, C.R.; Goraichuk, I.V.; Arns, C.W.; Bolotin, V.I.; Ferreira, H.L.; Gerilovych, A.P.; Goujgoulova, G.V.; Martini, M.C.; et al. Presence of Vaccine-Derived Newcastle Disease Viruses in Wild Birds. PLoS ONE 2016, 11, e0162484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, C.N.; Shittu, I.; Abolnik, C.; Solomon, P.; Dimitrov, K.M.; Taylor, T.L.; Williams-Coplin, D.; Goraichuk, I.V.; Meseko, C.A.; Ibu, J.O.; et al. Genomic Comparison of Newcastle Disease Viruses Isolated in Nigeria between 2002 and 2015 Reveals Circulation of Highly Diverse Genotypes and Spillover into Wild Birds. Arch. Virol. 2019, 164, 2031–2047. [Google Scholar] [CrossRef]
- Cardenas Garcia, S.; Lopez, R.N.; Morales, R.; Olvera, M.A.; Marquez, M.A.; Merino, R.; Miller, P.J.; Afonso, C.L. Molecular Epidemiology of Newcastle Disease in Mexico and the Potential Spillover of Viruses from Poultry into Wild Bird Species. Appl. Environ. Microbiol. 2013, 79, 4985–4992. [Google Scholar] [CrossRef] [Green Version]
- Rui, Z.; Juan, P.; Jingliang, S.; Jixun, Z.; Xiaoting, W.; Shouping, Z.; Xiaojiao, L.; Guozhong, Z. Phylogenetic Characterization of Newcastle Disease Virus Isolated in the Mainland of China during 2001–2009. Vet. Microbiol. 2010, 141, 246–257. [Google Scholar] [CrossRef]
- Wajid, A.; Basharat, A.; Ahmed Khan, T.; Wasim, M.; Rehmani, S.F. Complete Genome Sequence of a Velogenic Newcastle Disease Virus Strain Isolated from Clinically Healthy Exotic Parakeet (Melopsittacus Undulatus) in Pakistan. Genome Announc. 2017, 5, e01581-16. [Google Scholar] [CrossRef] [Green Version]
- Wajid, A.; Rehmani, S.F.; Wasim, M.; Basharat, A.; Bibi, T.; Arif, S.; Ababneh, M.; Miller, P.J.; Dimitrov, K.M.; Afonso, C.L. Repeated Spillover of Virulent Newcastle Disease Viruses among Poultry and Captive Non-Poultry Avian Species in Pakistan from 2011 to 2016. Prev. Vet. Med. 2017, 142, 1–6. [Google Scholar] [CrossRef]
- Alizon, S.; Michalakis, Y. Adaptive Virulence Evolution: The Good Old Fitness-Based Approach. Trends Ecol. Evol. 2015, 30, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Cressler, C.E.; McLeod, D.V.; Rozins, C.; van den Hoogen, J.; Day, T. The Adaptive Evolution of Virulence: A Review of Theoretical Predictions and Empirical Tests. Parasitology 2016, 143, 915–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | ICPI | Genotype | Host | Country | Isolate Name | GB Acc. |
---|---|---|---|---|---|---|
2001 | 0.2 | I.1.2.1 | Redknot | USA | A_101_1383 | EF564816 |
1948 | 1.8 | II | Chicken | USA | TX_GB | GU978777 |
1948 | 1.5 | II | Chicken | USA | New_Jersey_Roakin | JN863121 |
1945 | 1.45 | II | Chicken | USA | Beaudette_C | X04719 |
1946 | 0.4 | II | Chicken | USA | Lasota | AF077761 |
1947 | 0.2 | II | Chicken | USA | Hitchner_B1 | JN872151 |
1989 | 0.03 | II | Turkey | USA | VG_GA | EU289028 |
1971 | 1.8 | V | Chicken | USA | Ca_2098 | JQ247691 |
2002 | 1.79 | XIX | Chicken | USA | CA_212676 | EF520718 |
2000 | 1.64 | XIX | Chicken | Mexico | Chicken-Torreon_453 | EU518677 |
2000 | 1.61 | XIX | Chicken | Honduras | Chicken-15 | AY288993 |
2008 | 1.66 | V.2.1 | Turkey | Belize | 4438_4 | JN942045 |
2005 | 1.89 | V.2 | Chicken | Mexico | NDV_P05 | HM117720 |
2006 | 1.91 | V.2 | Chicken | Mexico | Estado_de_Mexico_466 | EU518684 |
2004 | 1.94 | V.2 | Chicken | Mexico | Distrito_Federal_462 | EU518682 |
2005 | 1.99 | V.2 | Chicken | Mexico | Estado_de_Mexico_465 | EU518683 |
1973 | 1.93 | V.2 | Dove | Mexico | Chimalhuacan | KJ577136 |
2009 | 1.65 | V.2_ | Macaw | Mexico | Chiapas_672_ZM12 | KC808510 |
1971 | 1.76 | V | Psittacine | USA | Largo | AY562990 |
2005 | 0.98 | VI.1.2.1.1.1 | Dove | USA Texas | TX4156 | EU477192 |
2000 | 1.13 | VI.1.2.1.1.1 | EC_Dove | USA RI | RI166 | EU477189 |
2004 | 1.15 | VI.1.2.1.1.1 | EC_Dove | USA Texas | TX3503 | EU477190 |
2013 | 1.15 | VI.1.2.1.1.1 | EC_Dove | USA | Allegheny_PA_ND0007199 | KP780874 |
2013 | 1.35 | VI.1.2.1.1.1 | EC_Dove | USA | Allegheny_PA_ND0007186 | KP780872 |
2005 | 1.26 | VI.1.2.1.1.1 | Pigeon | USA Texas | TX3988 | EU477191 |
2004 | 1.3 | VI.1.2.1.1.1 | Pigeon | USA TX | TX3988 | KU059752 |
2013 | 0.66 | VI.1.2.1.1.1 | Rock_Pigeon | USA | Ingham_MI_ND0003553 | KP780875 |
2006 | 0.73 | VI.1.2.1.1.1 | Rock_Pigeon | USA | TX6295 | EU477195 |
2004 | 0.79 | VI.1.2.1.1.1 | Rock_Pigeon | USA Texas | TX_B_2580 | EU477188 |
2013 | 0.88 | VI.1.2.1.1.1 | Rock_Pigeon | USA | Ingham_MI_ND0003558 | KP780876 |
2013 | 1.13 | VI.1.2.1.1.1 | Rock_Pigeon | USA | Allegheny_PA_ND0007190 | KP780871 |
2013 | 1.15 | VI.1.2.1.1.1 | Rock_Pigeon | USA | MD_ND0002270 | KP780870 |
2013 | 1.2 | VI.1.2.1.1.1 | Rock_Pigeon | USA | Allegheny_PA_ND0007187 | KP780873 |
1971 | 1.76 | VI | Chicken | USA | California_1083_Fontana_ | JN872153 |
2009 | 1.86 | VII.1.1 | Chicken | Venezuela | VEN-611 | JQ319052 |
1987 | 0.1 | X.1 | Northern_Pintail | USA | US_OH_87_486 | EF564826 |
1999 | 0 | X.2 | mallard | USA | US_MN_99_376 | FJ705466 |
1986 | 0 | X.2 | mallard | USA | US_OH_86_233 | EF564832 |
2011 | 1.78 | XII.1 | Chicken | Peru | Peacock | KR732614 |
2008 | 1.8 | XII.1 | Peacock | Peru | 1918_03 | JN800306 |
1995 | 1.39 | XIX | Cormorant | Canada | 95DC2345 | FJ705461 |
1995 | 1.39 | XIX | Cormorant | Canada | 95DC02150 | FJ705460 |
2008 | 1.39 | XIX | Cormorant | USA | 503 | GU332662 |
1998 | 1.41 | XIX | Cormorant | Canada | 98CNN3_V1125 | FJ705459 |
2010 | 1.43 | XIX | Cormorant | USA | ME_659 | JN255782 |
2005 | 1.45 | XIX | Cormorant | USA | NV_19529_04 | FJ705463 |
2010 | 1.45 | XIX | Cormorant | USA | MA_651 | JN255775 |
2010 | 1.51 | XIX | Cormorant | USA | ME_658_ | JN255781 |
2008 | 1.53 | XIX | Cormorant | USA | 496 | GU332655 |
2010 | 1.53 | XIX | Cormorant | USA | MN_648 | JN255784 |
1997 | 1.53 | XIX | Cormorant | USA CA | CA_D9704285 | FJ705458 |
2010 | 1.54 | XIX | Cormorant | USA | HN_652 | JN255785 |
2010 | 1.59 | XIX | Cormorant | USA | 656 | JN255779 |
1997 | 1.6 | XIX | Cormorant | USA | CA_97_23071 | FJ705457 |
1992 | 1.38 | XIX | Gull | USA | MN_92_40140 | FJ705456 |
2010 | 1.39 | XIX | Gull | USA | 655 | JN255778 |
2008 | 1.88 | XVI | Chicken | Dominican Republic | 499_31 | JX119193 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, C.L. Virulence during Newcastle Disease Viruses Cross Species Adaptation. Viruses 2021, 13, 110. https://doi.org/10.3390/v13010110
Afonso CL. Virulence during Newcastle Disease Viruses Cross Species Adaptation. Viruses. 2021; 13(1):110. https://doi.org/10.3390/v13010110
Chicago/Turabian StyleAfonso, Claudio L. 2021. "Virulence during Newcastle Disease Viruses Cross Species Adaptation" Viruses 13, no. 1: 110. https://doi.org/10.3390/v13010110
APA StyleAfonso, C. L. (2021). Virulence during Newcastle Disease Viruses Cross Species Adaptation. Viruses, 13(1), 110. https://doi.org/10.3390/v13010110