PRV-1 Virulence in Atlantic Salmon Is Affected by Host Genotype
<p>(<b>A</b>) Two-dimensional variance determined by a genetic principal component analysis of 50 k microarray genotypes among individual Atlantic salmon (n = 64) representing 4 geographically separate stains: British Columbia, Canada—Mowi-McConnell (BC salmon), European (Scotland) origin Mowi (EU salmon), New Brunswick, Canada—Tobique River (NB-TR salmon), and New Brunswick, Canada—Saint John River (NB-SJR salmon). (<b>B</b>) Tamura–Nei neighbor-joining phylogram indicating the genetic diversity of 48 concatenated PRV-1 genomes as presented by Siah et al. [<a href="#B36-viruses-17-00285" class="html-bibr">36</a>], as well as the 3 concatenated PRV-1 genomes sequenced in this study (highlighted with text) following Clustal Omega maximum-likelihood alignment. Phylogenetic groups (PRV-1b from Eastern Atlantic and Chile, PRV-1a from both Western and Eastern Atlantic, and PRV-1a from the Eastern Pacific) are indicated by branch lines color at 100% bootstrap consensus support. Scale bar indicates the genetic divergence as the average nucleotide substitutions per position.</p> "> Figure 2
<p>PRV-1 load, antiviral responsiveness, and inflammation in side-by-side challenge of BC Mowi-McConnell (BC) and New Brunswick St. John River (NB-SJR) Atlantic salmon. (<b>A</b>) Mean (line) and individual (dot) BC-PRV-1a L1 RNA loads measured 2–14 weeks post-challenge (wpc). Mean fold change (±SE) of (<b>B</b>) blood <span class="html-italic">mx1</span>, (<b>C</b>) blood <span class="html-italic">cd8a</span>, (<b>D</b>) blood <span class="html-italic">gzma</span>, (<b>E</b>) heart <span class="html-italic">mx1</span>, (<b>F</b>) heart <span class="html-italic">cd8a</span>, and (<b>G</b>) heart <span class="html-italic">gzma</span> transcripts relative to the mean of time-matched, strain-matched controls (SC); * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 by two-way ANOVA and Šídák’s multiple comparisons tests of log-transformed fold changes; minimum twofold change suggestive of biological relevance is shaded. (<b>H</b>) The cumulative prevalence of epicarditis and endocarditis in hearts of control (SC) and BC-PRV-1a challenged (PRV) fish within 14 wpc. * <span class="html-italic">p</span> < 0.05 by the Kruskal–Wallis and Dunn’s multiple comparisons tests.</p> "> Figure 3
<p>PRV-1 RNA loads of 72 individuals experiencing peak (6–10 wpc; left panels) or persistent (14 wpc; right panels) infections, categorized by either the strain of Atlantic salmon challenged (right component each panel) or the PRV-1 isolate administered (left component each panel). Mean (line) and individual (dot) PRV-1 L1 RNA loads identified in (<b>A</b>) whole blood, (<b>B</b>) the heart ventricle, or (<b>C</b>) plasma presented as the peak (eight highest recorded values 6–10 wpc from each salmon-virus challenge combination; n = 24 per category) or persistent (eight recorded values 14 wpc from each salmon-virus challenge combination; n = 24 per category) phases of infection. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 by one-way ANOVA and Tukey’s multiple comparisons tests of log-transformed values.</p> "> Figure 4
<p>Heart <span class="html-italic">cd8a, ifna</span>, and <span class="html-italic">ifng</span> transcriptional expression following PRV-1 challenge. (<b>A</b>) Corrected normalized relative quantity (CNRQ) of <span class="html-italic">ifna</span> (light circles) and <span class="html-italic">ifng</span> (dark circles) are presented relative to <span class="html-italic">cd8a</span> transcriptional expression for all (n = 384) salmon sampled between 6–12 wpc in this study. Pearson r (r) and associated <span class="html-italic">p</span>-value is provided. (<b>B</b>) Mean (line) and individual (dots) heart <span class="html-italic">cd8a</span> (left side) and <span class="html-italic">ifna</span> (right side) CNRQ transcripts in relation to histopathological cardiac inflammation score, where 0 = no inflammation (n = 201), 1 = mild inflammation (n = 151), 2 = moderate inflammation (n = 25), and 3 = severe inflammation (n = 4) for the same 6–12 wpc dataset. Letters denote groupings for mean statistical similarity by the Kruskal–Wallis nonparametric test and Dunn’s multiple comparisons tests at <span class="html-italic">p</span> < 0.01. Shaded areas present one standard deviation of target transcription in cardiac inflammation score 0 fish to provide a minimum threshold suggestive of biological relevance. (<b>C</b>) Mean (line) and individual (dots) of heart <span class="html-italic">cd8a</span> transcripts measured at 6–12 wpc from PRV-1-challenged salmon (n = 288) categorized relative to PRV-1 isolate administered (n = 24 per PRV-1 isolate per time point), or (<b>D</b>) relative to Atlantic salmon strain challenged (n = 24 per salmon strain per time point). ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 by two-way ANOVA and Šídák’s multiple comparisons tests of log-transformed CNRQ values; one standard deviation of <span class="html-italic">cd8a</span> expression recorded across all SC fish (n = 96) is shaded to suggest a minimum threshold for biological relevance.</p> "> Figure 5
<p>Heart and red skeletal muscle inflammation following PRV-1 challenge. The cumulative prevalence (%) of heart inflammation in PRV-1-challenged salmon over 14 weeks categorized by either (<b>A</b>) the PRV-1 isolate administered or (<b>B</b>) the strain of the recipient Atlantic salmon; ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 by Kruskal–Wallis and Dunn’s multiple comparisons tests. Heat maps of (<b>C</b>) heart and (<b>D</b>) red skeletal muscle presented as median inflammatory heart score in relation to each Atlantic salmon x PRV combination over a 14-week progression. Median inflammation score is defined by color, which ranges from 0 (no inflammation; white) to 3 (severe inflammation; brown). The cumulative prevalence (%) of red skeletal muscle inflammation in PRV-1-challenged salmon over the same 14 weeks categorized by either (<b>E</b>) the PRV-1 isolate administered or (<b>F</b>) the strain of recipient Atlantic salmon is also provided; *** <span class="html-italic">p</span> < 0.001 by Kruskal–Wallis and Dunn’s multiple comparisons tests.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. PRV-1 Isolates
2.2. Atlantic Salmon—Sources and Husbandry
2.3. PRV-1 Challenges of Atlantic Salmon
2.4. PRV-1 Detection and Quantification
2.5. Atlantic Salmon Gene Expression and Histopathology
2.6. PRV-1 and Atlantic Salmon Genotyping
2.7. Statistical Analyses
3. Results
3.1. Phylogentic Variation in Atantic Salmon Strains and PRV-1 Isolates
3.2. Challenge 1: PRV-1 Infection Dynamics and Host T Cell Responsiveness Can Vary Among Atlantic Salmon Strains
3.3. Challenge 2: PRV-1 Infection Dynamics Can Be Affected More by PRV-1 Isolate than Atlantic Salmon Strain
3.4. Challenge 2: Atlantic Salmon T Cell Responsiveness Can Be Affected by Both PRV-1 Isolate and Atlantic Salmon Strain
3.5. Challenge 2: PRV-1-Associated Heart Inflammation Can Be Affected More by Atlantic Salmon Strain than PRV-1 Isolate, Whereas Skeletal Muscle Inflammation Is Influenced Similarly by Both Salmon Strain and PRV-1 Isolate
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wessel, Ø.; Braaen, S.; Alarcon, M.; Haatveit, H.; Roos, N.; Markussen, T.; Tengs, T.; Dahle, M.K.; Rimstad, E. Infection with purified Piscine orthoreovirus demonstrates a causal relationship with heart and skeletal muscle inflammation in Atlantic salmon. PLoS ONE 2017, 12, e0183781. [Google Scholar] [CrossRef] [PubMed]
- Polinski, M.P.; Marty, G.D.; Snyman, H.N.; Garver, K.A. Piscine othoreovirus demonstrates high infectivity but low virulence in Atlantic salmon of Pacific Canada. Sci. Rep. 2019, 9, 3297. [Google Scholar] [CrossRef]
- Polinski, M.P.; Vendramin, N.; Cuenca, A.; Garver, K.A. Piscine orthoreovirus: Biology and distribution in farmed and wild fish. J. Fish Dis. 2020, 43, 1331–1352. [Google Scholar] [CrossRef]
- Palacios, G.; Lovoll, M.; Tengs, T.; Hornig, M.; Hutchison, S.; Hui, J.; Kongtorp, R.-T.; Savji, N.; Bussetti, A.V.; Solovyov, A.; et al. Heart and Skeletal Muscle Inflammation of Farmed Salmon Is Associated with Infection with a Novel Reovirus. PLoS ONE 2010, 5, e11487. [Google Scholar] [CrossRef]
- Kongtorp, R.T.; Kjerstad, A.; Taksdal, T.; Guttvik, A.; Falk, K. Heart and skeletal muscle inflammation in Atlantic salmon, Salmo salar L.: A new infectious disease. J. Fish. Dis. 2004, 27, 351–358. [Google Scholar] [CrossRef]
- Kongtorp, R.T.; Taksdal, T.; Lyngøy, A. Pathology of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon Salmo salar. Dis. Aquat. Org. 2004, 59, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Sommerset, I.; Wiik-Nielsen, J.; Oliveira, V.H.S.; Moldal, T.; Bornø, G.; Haukaas, A.; Brun, E. Norwegian Fish. Health Report 2022; Norwegian Veterinary Institute: As, Norway, 2023; p. 218. [Google Scholar]
- Polinski, M.P.; Gross, L.; Marty, G.D.; Garver, K.A. Heart inflammation and piscine orthoreovirus genotype-1 in Pacific Canada Atlantic salmon net-pen farms: 2016–2019. BMC Vet. Res. 2022, 18, 306. [Google Scholar] [CrossRef]
- Di Cicco, E.; Ferguson, H.W.; Schulze, A.D.; Kaukinen, K.H.; Li, S.; Vanderstichel, R.; Wessel, Ø.; Rimstad, E.; Gardner, I.A.; Hammell, K.L. Heart and skeletal muscle inflammation (HSMI) disease diagnosed on a British Columbia salmon farm through a longitudinal farm study. PLoS ONE 2017, 12, e0171471. [Google Scholar] [CrossRef] [PubMed]
- Marty, G.D.; Bidulka, J.; Joseph, T. Cross-sectional study of histopathology and piscine orthoreovirus during a marine production cycle of farmed Atlantic salmon (Salmo salar L.) in British Columbia, Canada. J. Fish Dis. 2020, 43, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Garver, K.A.; Johnson, S.C.; Polinski, M.P.; Bradshaw, J.C.; Marty, G.D.; Snyman, H.N.; Morrison, D.B.; Richard, J. Piscine orthoreovirus from western North America is transmissible to Atlantic salmon and Sockeye salmon but fails to cause Heart and Skeletal Muscle Inflammation. PLoS ONE 2016, 11, e0146229. [Google Scholar] [CrossRef]
- Wessel, Ø.; Hansen, E.F.; Dahle, M.K.; Alarcon, M.; Vatne, N.A.; Nyman, I.B.; Soleim, K.B.; Dhamotharan, K.; Timmerhaus, G.; Markussen, T.; et al. Piscine Orthoreovirus-1 Isolates Differ in Their Ability to Induce Heart and Skeletal Muscle Inflammation in Atlantic Salmon (Salmo salar). Pathogens 2020, 9, 1050. [Google Scholar] [CrossRef]
- Dhamotharan, K.; Tengs, T.; Wessel, Ø.; Braaen, S.; Nyman, I.B.; Hansen, E.F.; Christiansen, D.H.; Dahle, M.K.; Rimstad, E.; Markussen, T. Evolution of the Piscine orthoreovirus Genome Linked to Emergence of Heart and Skeletal Muscle Inflammation in Farmed Atlantic Salmon (Salmo salar). Viruses 2019, 11, 465. [Google Scholar] [CrossRef] [PubMed]
- Solarte-Murillo, L.; Reyes, H.; Ojeda, L.; Cárcamo, J.G.; Pontigo, J.P.; Loncoman, C.A. Analyses and Insights into Genetic Reassortment and Natural Selection as Key Drivers of Piscine orthoreovirus Evolution. Viruses 2024, 16, 556. [Google Scholar] [CrossRef] [PubMed]
- Vatne, N.A.; Stormoen, M.; Lund, M.; Devold, M.; Rimstad, E.; Wessel, Ø. Genetic grouping and geographic distribution of Piscine orthoreovirus-1 (PRV-1) in farmed Atlantic salmon in Norway. Vet. Res. 2021, 52, 131. [Google Scholar] [CrossRef]
- Løvoll, M.; Alarcón, M.; Jensen, B.B.; Taksdal, T.; Kristoffersen, A.B.; Tengs, T.; Lovoll, M.; Alarcon, M.; Jensen, B.B.; Taksdal, T.; et al. Quantification of piscine reovirus (PRV) at different stages of Atlantic salmon Salmo salar production. Dis. Aquat. Org. 2012, 99, 7–12. [Google Scholar] [CrossRef]
- Grammes, F.; Rørvik, K.A.; Takle, H. Tetradecylthioacetic acid modulates cardiac transcription in Atlantic salmon, Salmo salar L., suffering heart and skeletal muscle inflammation. J. Fish. Dis. 2012, 35, 109–117. [Google Scholar] [CrossRef]
- Rennemo, J.; Myrvold, S.; Berge, K.; Kileng, Ø.; Pedersen, B.; Aksberg, D.S.; Lisik, P.; Crappe, D.; McGurk, C.; Rimstad, E. In-depth health surveillance and clinical nutrition in farmed Atlantic salmon: A strategic attempt to detect and mitigate an HSMI outbreak. Vet. Res. 2023, 54, 3. [Google Scholar] [CrossRef]
- Martinez-Rubio, L.; Morais, S.; Evensen, Ø.; Wadsworth, S.; Ruohonen, K.; Vecino, J.L.G.; Bell, J.G.; Tocher, D.R. Functional feeds reduce heart inflammation and pathology in Atlantic salmon (Salmo salar L.) following experimental challenge with Atlantic salmon reovirus (ASRV). PLoS ONE 2012, 7, e40266. [Google Scholar] [CrossRef] [PubMed]
- AquaGen. Resistance against HSMI. In AquaGen; AquaGen: Trondheim, Norway, 2017; Volume 2018. [Google Scholar]
- Emilsen, V.; Bruheim, T.; Moen, T.; Kjoglum, S.; Korsvoll, S.; Santi, N. Marker assisted selection for improved HSMI-resistance in Atlantic salmon. In Proceedings of the 18th International Conference on the Diseases of Fish and Shellfish, Belfast, Northern Ireland, 4–8 September 2017. [Google Scholar]
- Polinski, M.P.; Bradshaw, J.C.; Inkpen, S.M.; Richard, J.; Fritsvold, C.; Poppe, T.T.; Rise, M.L.; Garver, K.A.; Johnson, S.C. De novo assembly of Sockeye salmon kidney transcriptomes reveal a limited early response to piscine reovirus with or without infectious hematopoietic necrosis virus superinfection. BMC Genom. 2016, 17, 848. [Google Scholar] [CrossRef]
- Zhang, Y.; Polinski, M.P.; Morrison, P.R.; Brauner, C.J.; Farrell, A.A.P.; Garver, K.A. High-load reovirus infections do not imply physiological impairment in salmon. Front. Physiol. 2019, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Scholthof, K.-B.G. The disease triangle: Pathogens, the environment and society. Nat. Rev. Microbiol. 2007, 5, 152–156. [Google Scholar] [CrossRef]
- Withler, R.E.; Supernault, K.J.; Miller, K.M. Genetic variation within and among domesticated Atlantic salmon broodstocks in British Columbia, Canada. Anim. Genet. 2005, 36, 43–50. [Google Scholar] [CrossRef]
- Peterson, B.C.; Burr, G.S.; Pietrak, M.R.; Proestou, D.A. Genetic improvement of north American atlantic salmon and the eastern oyster Crassostrea virginica at the US Department of agriculture–agricultural research service national cold water marine aquaculture center. N. Am. J. Aquac. 2020, 82, 321–330. [Google Scholar] [CrossRef]
- Liu, L.; Ang, K.P.; Elliott, J.A.; Kent, M.P.; Lien, S.; MacDonald, D.; Boulding, E.G. A genome scan for selection signatures comparing farmed Atlantic salmon with two wild populations: Testing colocalization among outlier markers, candidate genes, and quantitative trait loci for production traits. Evol. Appl. 2017, 10, 276–296. [Google Scholar] [CrossRef]
- Yousaf, M.N.; Koppang, E.O.; Skjødt, K.; Hordvik, I.; Zou, J.; Secombes, C.; Powell, M.D. Comparative cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD). Vet. Immunol. Immunopathol. 2013, 151, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Wiik-Nielsen, J.; Alarcón, M.; Jensen, B.B.; Haugland, Ø.; Mikalsen, A.B. Viral co-infections in farmed Atlantic salmon, Salmo salar L., displaying myocarditis. J. Fish. Dis. 2016, 39, 1495–1507. [Google Scholar] [CrossRef]
- Quick, J.; Grubaugh, N.D.; Pullan, S.T.; Claro, I.M.; Smith, A.D.; Gangavarapu, K.; Oliveira, G.; Robles-Sikisaka, R.; Rogers, T.F.; Beutler, N.A. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 2017, 12, 1261–1276. [Google Scholar] [CrossRef]
- Kibenge, M.J.T.; Iwamoto, T.; Wang, Y.; Morton, A.; Godoy, M.G.; Kibenge, F.S. Whole-genome analysis of piscine reovirus (PRV) shows PRV represents a new genus in family Reoviridae and its genome segment S1 sequences group it into two separate sub-genotypes. Virol. J. 2013, 10, 10–230. [Google Scholar] [CrossRef] [PubMed]
- Shabardina, V.; Kischka, T.; Manske, F.; Grundmann, N.; Frith, M.C.; Suzuki, Y.; Makałowski, W. NanoPipe—A web server for nanopore MinION sequencing data analysis. GigaScience 2019, 8, giy169. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Waldbieser, G.C.; Youngblood, R.C.; Zhao, D.; Pietrak, M.R.; Allen, M.S.; Stannard, J.A.; Buchanan, J.T.; Long, R.L.; Milligan, M. The generation of the first chromosome-level de novo genome assembly and the development and validation of a 50K SNP array for the St. John River aquaculture strain of North American Atlantic salmon. G3 Genes Genomes Genet. 2023, 13, jkad138. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Paradis, E. pegas: An R package for population genetics with an integrated–modular approach. Bioinformatics 2010, 26, 419–420. [Google Scholar] [CrossRef]
- Siah, A.; Breyta, R.; Warheit, K.; Gagne, N.; Purcell, M.K.; Morrison, D.; Powell, J.; Johnson, S. Genomes reveal genetic diversity of Piscine orthoreovirus in farmed and free-ranging salmonids from Canada and USA. Virus Evol. 2020, 6, veaa054. [Google Scholar] [CrossRef] [PubMed]
- Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 2005, 5, 184–186. [Google Scholar] [CrossRef]
- Liao, Z.; Wan, Q.; Shang, X.; Su, J. Large-scale SNP screenings identify markers linked with GCRV resistant traits through transcriptomes of individuals and cell lines in Ctenopharyngodon idella. Sci. Rep. 2017, 7, 1184. [Google Scholar] [CrossRef] [PubMed]
- Godoy, M.; Medina, D.A.; Suarez, R.; Valenzuela, S.; Romero, J.; Kibenge, M.; Wang, Y.; Kibenge, F. Extensive phylogenetic analysis of Piscine orthoreovirus genomic sequences shows the robustness of subgenotype classification. Pathogens 2021, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Kibenge, M.J.T.; Wang, Y.; Gayeski, N.; Morton, A.; Beardslee, K.; McMillan, B.; Kibenge, F.S.B. Piscine orthoreovirus sequences in escaped farmed Atlantic salmon in Washington and British Columbia. Virol. J. 2019, 16, 41. [Google Scholar] [CrossRef] [PubMed]
- Marty, G.D.; Morrison, D.B.; Bidulka, J.; Joseph, T.; Siah, A. Piscine reovirus in wild and farmed salmonids in British Columbia, Canada: 1974–2013. J. Fish Dis. 2015, 38, 713–728. [Google Scholar] [CrossRef]
- Kongtorp, R.T.; Halse, M.; Taksdal, T.; Falk, K. Longitudinal study of a natural outbreak of heart and skeletal muscle inflammation in Atlantic salmon, Salmo salar L. J. Fish Dis. 2006, 29, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Mikalsen, A.B.; Haugland, O.; Rode, M.; Solbakk, I.T.; Evensen, O. Atlantic Salmon Reovirus Infection Causes a CD8 T Cell Myocarditis in Atlantic Salmon (Salmo salar L.). PLoS ONE 2012, 7, e37269. [Google Scholar] [CrossRef]
- Muhamed, B.; Parks, T.; Sliwa, K. Genetics of rheumatic fever and rheumatic heart disease. Nat. Rev. Cardiol. 2020, 17, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Manríquez, R.A.; Sandoval, M.; Loncoman, C.; Tafalla, C.; Avendaño-Herrera, R.; Cárcamo, J.G. Epigenetic reprogramming around IFN1 and IFNy2 promoters in rainbow trout cells inoculated with infectious pancreatic necrosis virus (IPNV). Fish Shellfish Immunol. 2023, 140, 108947. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Wan, Q.; Su, J.; Su, J. DNA methylation of CiRIG-I gene notably relates to the resistance against GCRV and negatively-regulates mRNA expression in grass carp, Ctenopharyngodon idella. Immunobiology 2016, 221, 23–30. [Google Scholar] [CrossRef]
Challenge Trial | Viral Inoculate | Fish Stock | Mean Fish Weight (g) |
---|---|---|---|
1 | BC-PRV (purified particles) | BC salmon | 36 |
SC | BC salmon | 42 | |
BC-PRV (purified particles) | NB-SJR salmon | 42 | |
SC | NB-SJR salmon | 44 | |
2 | BC-PRV (purified particles) | BC salmon | 59 |
NB-PRV (blood homogenate) | BC salmon | 61 | |
NOR-PRV (purified particles) | BC salmon | 58 | |
SC | BC salmon | 55 | |
BC-PRV (purified particles) | NB-TR salmon | 43 | |
NB-PRV(blood homogenate) | NB-TR salmon | 44 | |
NOR-PRV (purified particles) | NB-TR salmon | 44 | |
SC | NB-TR salmon | 48 | |
BC-PRV (purified particles) | EU salmon | 67 | |
NB-PRV (blood homogenate) | EU salmon | 74 | |
NOR-PRV (purified particles) | EU salmon | 70 | |
SC | EU salmon | 71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polinski, M.; Gross, L.; Groman, D.; Alarcón, M.; Braceland, M.; Booman, M.; Ditlecadet, D.; May, S.; Gagné, N.; Garver, K. PRV-1 Virulence in Atlantic Salmon Is Affected by Host Genotype. Viruses 2025, 17, 285. https://doi.org/10.3390/v17020285
Polinski M, Gross L, Groman D, Alarcón M, Braceland M, Booman M, Ditlecadet D, May S, Gagné N, Garver K. PRV-1 Virulence in Atlantic Salmon Is Affected by Host Genotype. Viruses. 2025; 17(2):285. https://doi.org/10.3390/v17020285
Chicago/Turabian StylePolinski, Mark, Lynden Gross, David Groman, Marta Alarcón, Mark Braceland, Marije Booman, Delphine Ditlecadet, Samuel May, Nellie Gagné, and Kyle Garver. 2025. "PRV-1 Virulence in Atlantic Salmon Is Affected by Host Genotype" Viruses 17, no. 2: 285. https://doi.org/10.3390/v17020285
APA StylePolinski, M., Gross, L., Groman, D., Alarcón, M., Braceland, M., Booman, M., Ditlecadet, D., May, S., Gagné, N., & Garver, K. (2025). PRV-1 Virulence in Atlantic Salmon Is Affected by Host Genotype. Viruses, 17(2), 285. https://doi.org/10.3390/v17020285