Tourism-Induced Urbanization in Phuket Island, Thailand (1987–2024): A Spatiotemporal Analysis
"> Figure 1
<p>Thailand’s tourism industry’s resilience despite recurring disruptions from political, economic, and natural crises.</p> "> Figure 2
<p>Study area of Phuket, Thailand, showing the detailed coastal geography, tourist attractions, and its regional context.</p> "> Figure 3
<p>Number of scenes of Landsat images used in this study.</p> "> Figure 4
<p>General framework of the study illustrating the key methodological steps.</p> "> Figure 5
<p>Phuket LULC changes illustrated in spatial-temporal (<b>a</b>) and the changes in categories in Phuket over a span of years (<b>b</b>) from 1990 to 2024.</p> "> Figure 6
<p>Temporal variation in Phuket’s urban expansion.</p> "> Figure 7
<p>The urban landscape transformation underscores the critical need for strategic planning to address these challenges and ensure sustainable development for Phuket’s future.</p> "> Figure 8
<p>Correlation heatmap, revealing strong links between urban expansion, housing density, and economic indicators. (<b>a</b>) The relationship between urban growth, visitor numbers, and economic activity, highlighting long-term urbanization trends. (<b>b</b>) A strong alignment between actual and predicted urban expansion, confirming the model’s accuracy (<b>c</b>).</p> ">
Abstract
:1. Introduction
- In what ways does tourism-driven urbanization contrast with traditional urbanization models?
- How can economic policies and external crises (such as the 1997 Asian Financial Crisis, the 2004 Tsunami, and COVID-19) influence urban growth patterns?
- In what ways do land alterations driven by tourism affect long-term sustainability and resilience in Phuket?
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. LULC Classification
2.4. Urban Expansion Intensity and Diversity Analysis
3. Results
3.1. The Analysis of Phuket Land Use and Land Cover Changes
3.2. The Analysis of Phuket’s Urban Expansion Evolution
3.3. Urban Expansion Intensity and Diversity Analysis for Phuket
3.4. Analysis of Urban Growth and Densification Patterns
3.5. Analysis of Urban Expansion and Tourism
4. Discussion
4.1. Changes in the Land Use and Cover Patterns in Phuket
4.2. Phuket Changing Urban Landscape
4.3. Urban Growth and Densification Trends
4.4. Policy Recommendations for Urban Development in Phuket
5. Conclusions
- Strategic resource allocation to support growing populations while conserving natural ecosystems.
- Adaptive urban planning to address economic shifts and environmental challenges.
- Promotion of eco-friendly practices and green infrastructure to mitigate negative impacts of urbanization.
- Continuous monitoring and analysis of urban growth patterns to inform long-term planning.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Year: The year of data collection.
- visitor (m): Number of tourists visiting Phuket (in millions).
- GPP_Service (m baht): Gross Provincial Product from service sectors (in million baht).
- Revenue (m baht): Revenue generated from tourism (in million baht).
- House_Den: Housing density.
- Pop_Den: Population density.
- Acc_Urban: Cumulative urban area (in square kilometers).
- urban_area: Urbanized land area (in square kilometers).
Year | visitor | GPP_Service | Revenue | House_Den | Pop_Den | Acc_Urban | Urban_Area |
---|---|---|---|---|---|---|---|
1988 | 0.884 | 3263.0 | n/a | n/a | n/a | 66.5 | 66.5 |
1989 | 0.972 | 4269.0 | 6705.9 | n/a | n/a | 154.9 | 88.4 |
1990 | 1.254 | 4768.0 | 8574.3 | n/a | n/a | 264.4 | 109.5 |
1991 | 1.209 | 5005.0 | 10,700.0 | n/a | n/a | 367.7 | 103.3 |
1992 | 1.633 | 5412.4 | 33,891.2 | n/a | n/a | 482.4 | 114.7 |
1993 | 2.088 | 6347.6 | 41,037.0 | 104.7 | 357.6 | 558.3 | 75.9 |
1994 | 2.119 | 7813.3 | 28,989.7 | 111.9 | 367.5 | 622.9 | 64.6 |
1995 | 2.304 | 8592.0 | 31,000.2 | 125.6 | 382.6 | 712.6 | 89.7 |
1996 | 2.291 | 9445.7 | 28,442.4 | 137.1 | 395.3 | 811 | 98.4 |
1997 | 2.402 | 10,475.7 | 29,836.5 | 145.5 | 408.5 | 892.4 | 81.4 |
1998 | 2.660 | 14,805.9 | 42,692.5 | 149.7 | 425.8 | 973.8 | 81.4 |
1999 | 3.083 | 16,156.5 | 55,714.4 | 156.8 | 444.7 | 1039.2 | 65.4 |
2000 | 3.460 | 19,033.4 | 62,248.7 | 164.2 | 461.5 | 1118.7 | 79.5 |
2001 | 3.790 | 19,739.1 | 69,669.3 | 174.7 | 481.4 | 1183.2 | 64.5 |
2002 | 3.991 | 20,635.8 | 72,599.4 | 187.8 | 498 | 1265.6 | 82.4 |
2003 | 4.050 | 19,642.2 | 73,263.7 | 202 | 512.9 | 1359.5 | 93.9 |
2004 | 4.793 | 24,485.3 | 85,670.6 | 218.1 | 526.4 | 1444.2 | 84.7 |
2005 | 2.510 | 16,088.7 | 28,181.5 | 235.9 | 538.2 | 1533.6 | 89.4 |
2006 | 4.499 | 25,065.9 | 77,595.9 | 251.3 | 553.8 | 1623 | 89.4 |
2007 | 5.006 | 30,868.9 | 94,239.5 | 269.1 | 581 | 1738.6 | 115.6 |
2008 | 5.313 | 30,121.7 | 101,684.4 | 289.8 | 602.2 | 1832.3 | 93.7 |
2009 | 3.376 | 25,968.6 | 94,006.9 | 312.6 | 618.6 | 1937.1 | 104.8 |
2010 | 5.471 | 31,064.6 | 108,446.2 | 332.7 | 635.5 | 2063.1 | 126 |
2011 | 9.467 | 34,638.0 | 188,822.5 | 348.1 | 651.7 | 2150.6 | 87.5 |
2012 | 8.829 | n/a | 199,820.2 | 368.5 | 664.7 | 2249.8 | 99.2 |
2013 | 11.960 | n/a | 260,442.1 | 394.3 | 680.5 | 2361.4 | 111.6 |
2014 | 11.960 | n/a | 260,442.1 | 415.3 | 696.8 | 2490.3 | 128.9 |
2015 | 11.959 | 156,413.3 | 259,290.5 | 434.5 | 712 | 2592.9 | 102.6 |
2016 | 13.203 | 182,029.5 | 313,005.6 | 447 | 725.9 | 2692.7 | 99.8 |
2017 | 13.411 | 200,176.8 | 377,878.1 | 455.7 | 740.4 | 2767.1 | 74.4 |
2018 | 14.013 | 222,984.8 | 423,012.9 | 469.5 | 755.5 | 2837.6 | 70.5 |
2019 | 14.409 | 233,607.7 | 449,100.7 | 490 | 767.2 | 2928.5 | 90.9 |
2020 | 14.576 | 123,788.3 | 442,890.7 | 502.6 | 763.3 | 3041.9 | 113.4 |
2021 | 4.029 | 87,364.7 | 113,173.2 | 510.3 | 771.2 | 3130.7 | 88.8 |
2022 | 1.236 | 140,010.4 | 21,735.7 | 517.9 | 769.6 | 3218.2 | 87.5 |
2023 | 5.767 | n/a | 192,040.0 | 526.6 | 780.1 | 3220.2 | 102 |
2024 | 11.694 | n/a | 437,808.0 | 542.1 | 791.1 | 3451.6 | 131.4 |
Variable | Coefficient | Std. Error | t-Statistic | p-Value | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|---|---|
const | 77.7172837 | 52.0262829 | 1.49380812 | 0.15254882 | −31.585881 | 187.020448 |
visitor_lag1 | 17.1424424 | 10.2913015 | 1.66572152 | 0.1130765 | −4.4787797 | 38.7636644 |
visitor_lag2 | 0.52505912 | 18.2776177 | 0.02872689 | 0.97739852 | −37.874791 | 38.9249091 |
visitor_lag3 | −9.7431396 | 14.1999892 | −0.6861371 | 0.50136996 | −39.57621 | 20.0899307 |
GPP_lag1 | −0.0017477 | 0.00069159 | −2.5270287 | 0.02108735 | −0.0032007 | −0.0002947 |
House_Den_lag1 | 6.51614579 | 0.39193949 | 16.625387 | 2.28 × 10−12 | 5.69271146 | 7.33958011 |
Metric | Value |
---|---|
Dependent Variable | Acc_Urban |
Model | OLS |
Method | Least Squares |
R-squared | 0.993 |
Adj. R-squared | 0.991 |
F-statistic | 489 |
Prob (F-statistic) | 1.45 × 10−18 |
Log-Likelihood | −134.77 |
No. Observations | 24 |
AIC | 281.5 |
BIC | 288.6 |
Df Model | 5 |
Df Residuals | 18 |
Covariance Type | Nonrobust |
References
- Gohar, A. Tourism and Urbanization, An Interconnected Evolution. Sustain. Environ. 2021, 6, 96–135. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Dynamic Impacts of Economic Growth, Energy Use, Urbanization, Tourism, Agricultural Value-Added, and Forested Area on Carbon Dioxide Emissions in Brazil. J. Environ. Stud. Sci. 2022, 12, 794–814. [Google Scholar] [CrossRef]
- Balarabe, A.T.; Jordanov, I. LULC Image Classification with Convolutional Neural Network. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5985–5988. [Google Scholar]
- Yassine, H.; Tout, K.; Jaber, M. Improving Lulc Classification from Satellite Imagery Using Deep Learning–Eurosat Dataset. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2021, 43, 369–376. [Google Scholar] [CrossRef]
- Avci, C.; Budak, M.; Yagmur, N.; Balcik, F.B. Comparison between Random Forest and Support Vector Machine Algorithms for LULC Classification. Int. J. Eng. Geosci. 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Dezső, Z.; Pongrácz, R.; Bartholy, J. Surface Urban Heat Island in Budapest during Heat Waves and Droughts—Comparing the Summers of 2003, 2007 and 2022. Urban Clim 2024, 55, 101899. [Google Scholar] [CrossRef]
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Arifwidodo, S.D.; Tanaka, T. The Characteristics of Urban Heat Island in Bangkok, Thailand. Procedia Soc. Behav. Sci. 2015, 195, 423–428. [Google Scholar] [CrossRef]
- Marks, D.; Connell, J. Unequal and Unjust: The Political Ecology of Bangkok’s Increasing Urban Heat Island. Urban Stud. 2023, 61, 2887–2907. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y. Characterizing the Indicator-Based, Day-and-Night, and Climate-Based Variations in Response of Surface Urban Heat Island during Heat Wave across Global 561 Cities. Sustain. Cities Soc. 2023, 99, 104877. [Google Scholar] [CrossRef]
- Athukorala, D.; Murayama, Y. Urban Heat Island Formation in Greater Cairo: Spatio-Temporal Analysis of Daytime and Nighttime Land Surface Temperatures along the Urban-Rural Gradient. Remote Sens. 2021, 13, 1396. [Google Scholar] [CrossRef]
- Chakraborty, T.; Lee, X. A Simplified Urban-Extent Algorithm to Characterize Surface Urban Heat Islands on a Global Scale and Examine Vegetation Control on Their Spatiotemporal Variability. Int. J. Appl. Earth Observ. Geoinf. 2019, 74, 269–280. [Google Scholar] [CrossRef]
- Tan, J.; Wang, K.; Gan, C.; Ma, X. The Impacts of Tourism Development on Urban–Rural Integration: An Empirical Study Undertaken in the Yangtze River Delta Region. Land 2023, 12, 1365. [Google Scholar] [CrossRef]
- Cheng, Z.; Hu, X. The Effects of Urbanization and Urban Sprawl on CO2 Emissions in China. Environ. Dev. Sustain. 2023, 25, 1792–1808. [Google Scholar] [CrossRef]
- World Bank Thailand Economic Monitor: Unlocking the Growth Potential of Secondary Cities; World Bank: Bangkok, Thailand, 2024.
- Glassman, J. Economic Crisis in Asia: The Case of Thailand. Econ. Geogr. 2001, 77, 122–147. [Google Scholar] [CrossRef]
- Rungskunroch, P.; Triwanapong, S.; Wattanajitsiri, V.; Maneerat, P. Assessing the Viability of Enhancing Logistics and Supply Chain Operations: A Case Study of the Eastern Economic Corridor. Urban Plan. Transp. Res. 2024, 12, 2379352. [Google Scholar] [CrossRef]
- Thaweepworadej, P.; Evans, K.L. Urbanisation of a Growing Tropical Mega-City during the 21st Century—Landscape Transformation and Vegetation Dynamics. Landsc. Urban Plan. 2023, 238, 104812. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Thanh, B.X.; Vuong, T.H. Assessment of Urbanization and Urban Heat Islands in Ho Chi Minh City, Vietnam Using Landsat Data. Sustain. Cities Soc. 2017, 30, 150–161. [Google Scholar] [CrossRef]
- Santhanam, H.; Majumdar, R. Quantification of Green-Blue Ratios, Impervious Surface Area and Pace of Urbanisation for Sustainable Management of Urban Lake—Land Zones in India—A Case Study from Bengaluru City. J. Urban Manag. 2022, 11, 310–320. [Google Scholar] [CrossRef]
- Chatterjee, U.; Majumdar, S. Impact of Land Use Change and Rapid Urbanization on Urban Heat Island in Kolkata City: A Remote Sensing Based Perspective. J. Urban Manag. 2022, 11, 59–71. [Google Scholar] [CrossRef]
- Lin, C.; Doyog, N.D. Challenges of Retrieving LULC Information in Rural-Forest Mosaic Landscapes Using Random Forest Technique. Forests 2023, 14, 816. [Google Scholar] [CrossRef]
- Derdouri, A.; Wang, R.; Murayama, Y.; Osaragi, T. Understanding the Links between Lulc Changes and Suhi in Cities: Insights from Two-Decadal Studies (2001–2020). Remote Sens. 2021, 13, 3654. [Google Scholar] [CrossRef]
- Orieschnig, C.A.; Belaud, G.; Venot, J.P.; Massuel, S.; Ogilvie, A. Input Imagery, Classifiers, and Cloud Computing: Insights from Multi-Temporal LULC Mapping in the Cambodian Mekong Delta. Eur. J. Remote Sens. 2021, 54, 398–416. [Google Scholar] [CrossRef]
- Xu, G.; Jiao, L.; Liu, J.; Shi, Z.; Zeng, C.; Liu, Y. Understanding Urban Expansion Combining Macro Patterns and Micro Dynamics in Three Southeast Asian Megacities. Sci. Total Environ. 2019, 660, 375–383. [Google Scholar] [CrossRef]
- Ranagalage, M.; Morimoto, T.; Simwanda, M.; Murayama, Y. Spatial Analysis of Urbanization Patterns in Four Rapidly Growing South Asian Cities Using Sentinel-2 Data. Remote Sens. 2021, 13, 1531. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N.; Yang, X. Spatial Pattern Impact of Impervious Surface Density on Urban Heat Island Effect: A Case Study in Xuzhou, China. Land 2022, 11, 2135. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, F.; Zong, Q.; Jin, K.; Liu, C.; Qin, P. Spatial Patterns and Driving Forces of Urban Vegetation Greenness in China: A Case Study Comprising 289 Cities. Geogr. Sustain. 2024, 5, 370–381. [Google Scholar] [CrossRef]
- Dutta, D.; Rahman, A.; Paul, S.K.; Kundu, A. Changing Pattern of Urban Landscape and Its Effect on Land Surface Temperature in and around Delhi. Environ. Monit. Assess. 2019, 191, 551. [Google Scholar] [CrossRef]
- Graells, G.; Nakamura, N.; Celis-Diez, J.L.; Lagos, N.A.; Marquet, P.A.; Pliscoff, P.; Gelcich, S. A Review on Coastal Urban Ecology: Research Gaps, Challenges, and Needs. Front. Mar. Sci. 2021, 8, 617897. [Google Scholar] [CrossRef]
- Lakshmi, S.R.; Shaji, T.L. Transformation of Coastal Settlements Due to Tourism. Procedia Technol. 2016, 24, 1668–1680. [Google Scholar] [CrossRef]
- Rahman, M.K.; Masud, M.M.; Akhtar, R.; Hossain, M.M. Impact of Community Participation on Sustainable Development of Marine Protected Areas: Assessment of Ecotourism Development. Int. J. Tour. Res. 2022, 24, 33–43. [Google Scholar] [CrossRef]
- Lodato, F.; Colonna, N.; Pennazza, G.; Praticò, S.; Santonico, M.; Vollero, L.; Pollino, M. Analysis of the Spatiotemporal Urban Expansion of the Rome Coastline through GEE and RF Algorithm, Using Landsat Imagery. ISPRS Int. J. Geoinf. 2023, 12, 141. [Google Scholar] [CrossRef]
- Naikoo, M.W.; Rihan, M.; Ishtiaque, M. Shahfahad Analyses of Land Use Land Cover (LULC) Change and Built-up Expansion in the Suburb of a Metropolitan City: Spatio-Temporal Analysis of Delhi NCR Using Landsat Datasets. J. Urban Manag. 2020, 9, 347–359. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Chen, R.; Li, X.; Zhang, Y.; Zhou, P.; Wang, Y.; Shi, L.; Jiang, L.; Ling, F.; Du, Y. Spatiotemporal Continuous Impervious Surface Mapping by Fusion of Landsat Time Series Data and Google Earth Imagery. Remote Sens. 2021, 13, 2409. [Google Scholar] [CrossRef]
- Yang, Z.; Witharana, C.; Hurd, J.; Wang, K.; Hao, R.; Tong, S. Using Landsat 8 Data to Compare Percent Impervious Surface Area and Normalized Difference Vegetation Index as Indicators of Urban Heat Island Effects in Connecticut, USA. Environ. Earth Sci. 2020, 79, 424. [Google Scholar] [CrossRef]
- Deliry, S.I.; Avdan, Z.Y.; Avdan, U. Extracting Urban Impervious Surfaces from Sentinel-2 and Landsat-8 Satellite Data for Urban Planning and Environmental Management. Environ. Sci. Pollut. Res. 2021, 28, 6572–6586. [Google Scholar] [CrossRef]
- Chang, L.; Cheng, L.; Huang, C.; Qin, S.; Fu, C.; Li, S. Extracting Urban Water Bodies from Landsat Imagery Based on MNDWI and HSV Transformation. Remote Sens. 2022, 14, 5785. [Google Scholar] [CrossRef]
- Aigbokhan, O.J.; Pelemo, O.J.; Ogoliegbune, O.M.; Essien, N.E.; Ekundayo, A.A.; Adamu, S.I. Comparing Machine Learning Algorithms in Land Use Land Cover Classification of Landsat 8 (OLI) Imagery. Asian Res. J. Math. 2022, 18, 62–74. [Google Scholar] [CrossRef]
- Alam, I.; Nahar, K.; Morshed, M.M. Measuring Urban Expansion Pattern Using Spatial Matrices in Khulna City, Bangladesh. Heliyon 2023, 9, e13193. [Google Scholar] [CrossRef]
- Al-Sharif, A.A.A.; Pradhan, B.; Shafri, H.Z.M.; Mansor, S. Quantitative Analysis of Urban Sprawl in Tripoli Using Pearson’s Chi-Square Statistics and Urban Expansion Intensity Index. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 012006. [Google Scholar] [CrossRef]
- Norouzi, Y. Measuring Land Use Changes and Quantifying Urban Expansion Using Remote Sensing and Gis Techniques—A Case Study of Qom. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2023, 10, 609–615. [Google Scholar] [CrossRef]
- Das, S.; Angadi, D.P. Assessment of Urban Sprawl Using Landscape Metrics and Shannon’s Entropy Model Approach in Town Level of Barrackpore Sub-Divisional Region, India. Model. Earth Syst. Environ. 2021, 7, 1071–1095. [Google Scholar] [CrossRef]
- Manesha, E.P.P.; Jayasinghe, A.; Kalpana, H.N. Measuring Urban Sprawl of Small and Medium Towns Using GIS and Remote Sensing Techniques: A Case Study of Sri Lanka. Egypt. J. Remote Sens. Space Sci. 2021, 24, 1051–1060. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Liu, Z.; Xu, X.; Wang, B. Analysis on the Spatio-Temporal Characteristics of Urban Expansion and the Complex Driving Mechanism: Taking the Pearl River Delta Urban Agglomeration as a Case. Complexity 2020, 2020, 8157143. [Google Scholar] [CrossRef]
- Indrawati, L.; Murti, S.H.; Rachmawati, R.; Kurniawan, A. Urban Expansion Analysis through Remote Sensing and GIS in Semarang-Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 451, 012018. [Google Scholar] [CrossRef]
- Indrawati, L.; Sigit Heru Murti, B.S.; Rachmawati, R.; Aji, D.S. Effect of Urban Expansion Intensity on Urban Ecological Status Utilizing Remote Sensing and GIS: A Study of Semarang-Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 451, 012018. [Google Scholar] [CrossRef]
- Gaur, S.; Singh, R. A Comprehensive Review on Land Use/Land Cover (LULC) Change Modeling for Urban Development: Current Status and Future Prospects. Sustainability 2023, 15, 903. [Google Scholar] [CrossRef]
- Hanafiah, M.H. Framing the Future Agenda of Blue Tourism in Sustainable Coastal Tourism Destinations. Tour. Hosp. Manag. 2022, 28, 465–470. [Google Scholar] [CrossRef]
- Rana, B.; Bandyopadhyay, J.; Halder, B. Investigating the Relationship between Urban Sprawl and Urban Heat Island Using Remote Sensing and Machine Learning Approaches. Theor. Appl. Climatol. 2024, 155, 4161–4188. [Google Scholar] [CrossRef]
- Din, S.U.; Mak, H.W.L. Retrieval of Land-Use/Land Cover Change (Lucc) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework. Remote Sens. 2021, 13, 3337. [Google Scholar] [CrossRef]
- Ramzan, M.; Saqib, Z.A.; Hussain, E.; Khan, J.A.; Nazir, A.; Dasti, M.Y.S.; Ali, S.; Niazi, N.K. Remote Sensing-Based Prediction of Temporal Changes in Land Surface Temperature and Land Use-Land Cover (LULC) in Urban Environments. Land 2022, 11, 1610. [Google Scholar] [CrossRef]
- Woldegebriel Tessema, M.; Girma Abebe, B. Quantification of Land Use/Land Cover Dynamics and Urban Growth in Rapidly Urbanized Countries: The Case Hawassa City, Ethiopia. Urban Plan. Transp. Res. 2023, 11, 2281989. [Google Scholar] [CrossRef]
- Mitra, S.; Roy, S.; Hore, S. Assessment and Forecasting of the Urban Dynamics through Lulc Based Mixed Model: Evidence from Agartala, India. GeoJournal 2023, 88, 2399–2422. [Google Scholar] [CrossRef]
- Ouma, Y.; Nkwae, B.; Moalafhi, D.; Odirile, P.; Parida, B.; Anderson, G.; Qi, J. Comparison of Machine Learning Classifiers for Multitemporal and Multisensor Mapping of Urban Lulc Features. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, 43, 681–689. [Google Scholar] [CrossRef]
- Saha, S.; Saha, A.; Das, M.; Saha, A.; Sarkar, R.; Das, A. Analyzing Spatial Relationship between Land Use/Land Cover (LULC) and Land Surface Temperature (LST) of Three Urban Agglomerations (UAs) of Eastern India. Remote Sens. Appl. 2021, 22, 100507. [Google Scholar] [CrossRef]
- Zhou, M.; Lu, L.; Guo, H.; Weng, Q.; Cao, S.; Zhang, S.; Li, Q. Urban Sprawl and Changes in Land-Use Efficiency in the Beijing–Tianjin–Hebei Region, China from 2000 to 2020: A Spatiotemporal Analysis Using Earth Observation Data. Remote Sens. 2021, 13, 2850. [Google Scholar] [CrossRef]
- Amini, S.; Saber, M.; Rabiei-Dastjerdi, H.; Homayouni, S. Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series. Remote Sens. 2022, 14, 2654. [Google Scholar] [CrossRef]
- Pimpa, N. Amazing Thailand: Organizational Culture in the Thai Public Sector. Int. Bus. Res. 2012, 5, 35. [Google Scholar] [CrossRef]
- Kontogeorgopoulos, N. Sustainable Tourism or Sustainable Development? Financial Crisis, Ecotourism, and the “Amazing Thailand” Campaign. Curr. Issues Tour. 1999, 2, 316–332. [Google Scholar] [CrossRef]
- Zhu, H.; Yasami, M. Sustainable Tourism Recovery amid the COVID-19 Pandemic: A Case Study of the Phuket Sandbox Scheme. J. Environ. Manag. Tour. 2022, 13, 477–485. [Google Scholar] [CrossRef]
- Fuchs, K. An Exploratory Interview Study on Travel Risk Perception: The Case of Phuket Sandbox. J. Environ. Manag. Tour. 2022, 13, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Thaicharoen, S.; Meunrat, S.; Leng-Ee, W.; Koyadun, S.; Ronnasiri, N.; Iamsirithaworn, S.; Chaifoo, W.; Tulalamba, W.; Viprakasit, V. How Thailand’s Tourism Industry Coped with COVID-19 Pandemics: A Lesson from the Pilot Phuket Tourism Sandbox Project. J. Travel Med. 2023, 30, taac151. [Google Scholar] [CrossRef] [PubMed]
- Wudhikarn, R.; Pattanasak, P.; Cherapanukorn, V.; Paphawasit, B. Evaluating the Intellectual Capital of Intensively Tourism-Dependent Countries Between, Prior, and During the COVID-19 Pandemic. Sustainability 2024, 16, 1510. [Google Scholar] [CrossRef]
UEII | Interpretation |
---|---|
Negative UEII | Decline in urban areas, potentially due to de-urbanization, land reclassification, or environmental impacts. |
Low UEII (<0.5%) | Slow growth or stagnation indicated mature urban areas with limited expansion. |
Moderate UEII (0.5–2%) | Steady and manageable urban growth. Indicates balanced development. |
High UEII (>2%) | Very high-speed development indicated significant urban expansion. |
Shannon Entropy | |
High Entropy (4.5 to 5.25) | High diversity and spread in urban development. |
Moderate Entropy (2.5 to 4.5) | Balanced but not extreme diversity. |
Low Entropy (0 to 2.5) | Low diversity and high concentration. |
Accuracy | LULC (km2) | |||||||
---|---|---|---|---|---|---|---|---|
Year | OA | KC | Urban (%) | Water (%) | Agriculture (%) | Forest (%) | Barren (%) | Mangrove (%) |
1987–1990 | 0.9606 | 0.9400 | 78.9 (14.5) | 11.3 (2.1) | 267.4 (49.2) | 138.2 (25.5) | 13.5 (2.5) | 33.7 (6.2) |
1991–1995 | 0.9569 | 0.9344 | 89.6 (16.5) | 12.8 (2.4) | 238.9 (44.0) | 143.6 (26.4) | 25.0 (4.6) | 33.0 (6.1) |
1996–2000 | 0.9500 | 0.9348 | 92.6 (17.1) | 13.2 (2.4) | 229.4 (42.2) | 135.5 (25.0) | 36.4 (6.7) | 35.7 (6.6) |
2001–2005 | 0.9487 | 0.9380 | 97.0 (17.9) | 13.9 (2.6) | 235.3(43.3) | 134.9 (24.8) | 35.1 (6.5) | 27.0 (5.0) |
2006–2010 | 0.9452 | 0.9204 | 105.9 (19.5) | 15.1 (2.8) | 223.0 (41.1) | 136.2 (25.1) | 31.0 (5.7) | 31.7 (5.8) |
2011–2015 | 0.9427 | 0.9156 | 106.0 (19.5) | 15.1 (2.8) | 238.5 (43.9) | 102.5 (18.9) | 51.9 (9.6) | 29.0 (5.3) |
2016–2020 | 0.9451 | 0.9184 | 89.8 (16.5) | 12.8 (2.4) | 288.6 (53.1) | 105.9 (19.5) | 18.9 (3.5) | 27.0 (5.0) |
2021–2024 | 0.9426 | 0.9270 | 102.4 (18.9) | 14.6 (2.7) | 278.9 (51.4) | 109.9 (20.2) | 13.5 (2.5) | 23.6 (4.3) |
Study Period | Urban Area (Square Kilometers) | UEII | Shannon Entropy |
---|---|---|---|
1987–1990 | 78.9 | 19.43 | 1.94 |
1991–1995 | 89.6 | −3.40 | 2.29 |
1996–2000 | 92.6 | −4.73 | 2.27 |
2001–2005 | 97.0 | 23.70 | 2.25 |
2006–2010 | 105.9 | 9.15 | 2.31 |
2011–2015 | 106.0 | 3.77 | 2.31 |
2016–2020 | 89.8 | 3.40 | 2.30 |
2021–2024 | 102.4 | 14.20 | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moukomla, S.; Marome, W. Tourism-Induced Urbanization in Phuket Island, Thailand (1987–2024): A Spatiotemporal Analysis. Urban Sci. 2025, 9, 55. https://doi.org/10.3390/urbansci9030055
Moukomla S, Marome W. Tourism-Induced Urbanization in Phuket Island, Thailand (1987–2024): A Spatiotemporal Analysis. Urban Science. 2025; 9(3):55. https://doi.org/10.3390/urbansci9030055
Chicago/Turabian StyleMoukomla, Sitthisak, and Wijitbusaba Marome. 2025. "Tourism-Induced Urbanization in Phuket Island, Thailand (1987–2024): A Spatiotemporal Analysis" Urban Science 9, no. 3: 55. https://doi.org/10.3390/urbansci9030055
APA StyleMoukomla, S., & Marome, W. (2025). Tourism-Induced Urbanization in Phuket Island, Thailand (1987–2024): A Spatiotemporal Analysis. Urban Science, 9(3), 55. https://doi.org/10.3390/urbansci9030055