A Comprehensive Review on Land Use/Land Cover (LULC) Change Modeling for Urban Development: Current Status and Future Prospects
Abstract
:1. Introduction
- (1).
- What potential approaches have been used to model LULC?
- (2).
- What are the pros and cons of different LULC models?
- (3).
- What are the prominent novel LULC models?
- (4).
- What are the different software available to carry out LULC modeling?
2. Methods
2.1. LULC Modeling
2.1.1. Statistical Models
2.1.2. Cellular Automata (CA) Models
2.1.3. Economic Model
2.1.4. Agent-Based Models (ABMs)
2.1.5. Hybrid Models
2.1.6. Time Series Modeling for LULC Change
2.2. Possible Novel Aspects in LULC Modeling Techniques
Utility of Machine Learning (ML) in LULC Modeling
2.3. Available Modeling Software Packages for LULC Predictions
2.3.1. CLUE-S
2.3.2. DYNAMICA EGO
2.3.3. Land Change Modeler (LCM)
2.3.4. SLEUTH
2.3.5. Other Popular Software, Libraries, and Plugins for LULC
3. Discussion
3.1. Credibility of LULC Change Modeling
3.2. Relating LULC Change Modeling to Policy
3.3. LULC Scenarios for Urban Growth Predictions
4. Conclusions
- Integration of robust modeling platforms to utilize the strength of the individual model;
- Consideration of the uncertainties associated with different sources and their communication with the stakeholders;
- Development of generic protocols and use of online data to provide opportunities to overcome the difficulties in comparing and coupling ABMs;
- Incorporation of policies and relevant stakeholders in the LULC modeling frameworks;
- Development of an open access simple modeling framework and datasets globally applicable;
- Development of generic protocols and the use of online data infrastructures provide opportunities to overcome the difficulties in comparing and scaling ABMs.
- The present review will assist researchers, land managers, policymakers, and urban planners in better land management and urban planning practices, and ultimately assist in achieving Sustainable Development Goal-15 (SDG-15) (i.e., life on land).
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaur, S.; Mittal, A.; Bandyopadhyay, A.; Holman, I.; Singh, R. Spatio-Temporal Analysis of Land Use and Land Cover Change: A Systematic Model Inter-Comparison Driven by Integrated Modelling Techniques. Int. J. Remote Sens. 2020, 41, 9229–9255. [Google Scholar] [CrossRef]
- Gaur, S.; Bandyopadhyay, A.; Singh, R. Projecting Land Use Growth and Associated Impacts on Hydrological Balance through Scenario-Based Modelling in the Subarnarekha Basin, India. Hydrol. Sci. J. 2021, 66, 1997–2010. [Google Scholar] [CrossRef]
- Verburg, P.H.; Kok, K.; Pontius, R.G.; Veldkamp, A. Modeling land-use and land-cover change. In Land-Use and Land-Cover Change: Local Processes and Global Impacts; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 117–135. [Google Scholar]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Ren, Y.; Lü, Y.; Comber, A.; Fu, B.; Harris, P.; Wu, L. Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth-Sci. Rev. 2019, 190, 398–415. [Google Scholar] [CrossRef]
- Mas, J.F.; Kolb, M.; Paegelow, M.; Camacho Olmedo, M.T.; Houet, T. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ. Model. Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Overmars, K.P.; Verburg, P.H. Analysis of Land Use Drivers at the Watershed and Household Level: Linking Two Paradigms at the Philippine Forest Fringe. Int. J. Geogr. Inf. Sci. 2005, 19, 125–152. [Google Scholar] [CrossRef]
- An, L. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol. Model. 2012, 229, 25–36. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of Logistic Regression, Markov Chain and Cellular Automata Models to Simulate Urban Expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Poelmans, L.; Van Rompaey, A. Complexity and Performance of Urban Expansion Models. Comput. Environ. Urban Syst. 2010, 34, 17–27. [Google Scholar] [CrossRef]
- Pontius, R.G.; Schneider, L.C. Land-cover Change Model Validation by an ROC Method for the Ipswich Watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
- Kolb, M.; Mas, J.F.; Galicia, L. Evaluating Drivers of Land-Use Change and Transition Potential Models in a Complex Landscape in Southern Mexico. Int. J. Geogr. Inf. Sci. 2013, 27, 1804–1827. [Google Scholar] [CrossRef]
- Gaur, S.; Bandyopadhyay, A.; Singh, R. From Changing Environment to Changing Extremes: Exploring the Future Streamflow and Associated Uncertainties Through Integrated Modelling System. Water Resour. Manag. 2021, 35, 1889–1911. [Google Scholar] [CrossRef]
- Gaur, S.; Krishna, C.T.; Bandyopadhyay, A.; Singh, R. Diagnosing the Combined Impact of Climate and Land Use Land Cover Changes on the Streamflow in a Mountainous Watershed. In Sustainability of Water Resources. Water Science and Technology; Yadav, B., Mohanty, M.P., Pandey, A., Singh, V.P., Singh, R.D., Eds.; Springer: Cham, Switzerland, 2022; Volume 116. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Serneels, S.; Said, M.Y.; Lambin, E.F. Land Cover Changes around a Major East African Wildlife Reserve: The Mara Ecosystem (Kenya). Int. J. Remote Sens. 2001, 22, 3397–3420. [Google Scholar] [CrossRef]
- NRC. Advancing Land Change Modeling: Opportunities and Research Requirements; National Research Council: Washington, DC, USA, 2014. [Google Scholar]
- Lin, Y.P.; Chu, H.J.; Wu, C.F.; Verburg, P.H. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling-a case study. Int. J. Geogr. Inf. Sci. 2011, 25, 65–87. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.M.; Rahman, F.; Jashimuddin, F. Modeling Land Use Change Using Cellular Automata and Artificial Neural Network: The Case of Chunati Wildlife Sanctuary, Bangladesh. Ecol. Indic. 2018, 88, 439–453. [Google Scholar] [CrossRef]
- Xiaohua, T.; Yongjiu, F. A review of assessment methods for cellular automata models of land-use change and urban growth. Int. J. Geogr. Inf. Sci. 2020, 34, 866–898. [Google Scholar] [CrossRef]
- Calvin, K.V.; Snyder, A.; Zhao, X.; Wise, M. Modeling land use and land cover change: Using a hindcast to estimate economic parameters in gcamland v2.0. Geosci. Model Dev. 2022, 15, 429–447. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H. Land-Use and Land-Cover Change: Local Processes and Global Impacts; The IGBP Global Change Series; Springer: Berlin/Heidelberg Germany; New York, NY, USA, 2006. [Google Scholar]
- Evans, T.P.; Phanvilay, K.; Fox, J.; Vogler, J. An agent-based model of agricultural innovation, land-cover change and household inequality: The transition from swidden cultivation to rubber plantations in Laos PDR. J. Land Use Sci. 2011, 6, 151–173. [Google Scholar] [CrossRef]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann. Am. Assoc. Geogr. 2009, 93, 314–337. [Google Scholar] [CrossRef] [Green Version]
- Jining, Y.; Wang, L.; Song, W.; Chen, Y.; Chen, X.; Deng, Z. A time-series classification approach based on change detection for rapid land cover mapping. ISPRS J. Photogramm. Remote Sens. 2019, 158, 249–262. [Google Scholar] [CrossRef]
- Reba, M.; Seto, K.C. A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sens. Environ. 2020, 242, 111739. [Google Scholar] [CrossRef]
- Colditz, R.R.; Acosta-Velázquez, J.; Díaz Gallegos, J.R.; Vázquez Lule, A.D.; Rodríguez-Zúñiga, M.T.; Maeda, P.; Cruz Lopez, M.I.; Ressl, R. Potential effects in multiresolution post-classification change detection. Int. J. Remote Sens. 2012, 33, 6426–6445. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review Article Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Herold, M.; Tsendbazar, N.E.; Masiliūnas, D.; Li, L.; Lesiv, M.; Fritz, S.; Verbesselt, J. Time series analysis for global land cover change monitoring: A comparison across sensors. Remote Sens. Environ. 2022, 271, 112905. [Google Scholar] [CrossRef]
- Yamashita, R.; Hoshino, S. Development of an agent-based model for estimation of agricultural land preservation in rural Japan. Agric. Syst. 2018, 164, 264–276. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.A.; Rahman, A. Landuse land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Kalteh, A.M.; Hjortha, P.; Berndtsson, R. Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application. Environ. Model Softw. 2008, 23, 835–845. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Arneth, A.; Alexander, P.; Brown, D.G.; de Noblet-Ducoudré, N.; Ellis, E.; Finnigan, J.; Galvin, K.; Grigg, N.; Harman, I.; et al. Towards decision-based global land use models for improved understanding of the Earth system. Earth Syst. Dyn. 2014, 5, 117–137. [Google Scholar] [CrossRef] [Green Version]
- Veldkamp, A.; Fresco, L.O. CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecol. Model. 1996, 91, 231–248. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Ulloa-Espíndola, R.; Martín-Fernández, S. Simulation and Analysis of Land Use Changes Applying Cellular Automata in the South of Quito and the Machachi Valley, Province of Pichincha, Ecuador. Sustainability 2021, 13, 9525. [Google Scholar] [CrossRef]
- Ferreira, B.M.; Soares-Filho, B.S.; Pereira, F.M.Q. The Dinamica EGO virtual machine. Sci. Comput. Program. 2019, 173, 3–20. [Google Scholar] [CrossRef]
- Clarke, K.C. A Decade of Cellular Urban Modeling with SLEUTH: Unresolved Issues and Problems. In Ch. 3 in Planning Support Systems for Cities and Regions; Brail, R.K., Ed.; Lincoln Institute of Land Policy: Cambridge MA, USA, 2008; pp. 47–60. [Google Scholar]
- Chaudhuri, G.; Clarke, K.C. The SLEUTH land use change model: A review. Int. J. Environ. Resour. 2013, 1, 88–104. [Google Scholar] [CrossRef]
- Prestele, R.; Alexander, P.; Rounsevell, M.D.A.; Arneth, A.; Calvin, K.; Doelman, J.; Eitelberg, D.A.; Engstrom, K.; Fujimori, S.; Hasegawa, T.; et al. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison. Glob. Change Biol. 2016, 22, 3967–3983. [Google Scholar] [CrossRef] [Green Version]
- Sohl, T.L.; Claggett, P.R. Clarity versus complexity: Land-use modeling as a practical tool for decision-makers. J. Environ. Manag. 2013, 129, 235–243. [Google Scholar] [CrossRef]
- Aduah, M.S. Impacts of Global Changes on a Lowland Rainforest Region of West Africa Thesis. Ph.D. Thesis, Centre for Water Resources Research (CWRR), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2016. [Google Scholar]
- Samie, A.; Deng, X.; Jia, S.; Chen, D. Scenario-Based Simulation on Dynamics of Land-Use-Land-Cover Change in Punjab Province, Pakistan. Sustainability 2017, 9, 1285. [Google Scholar] [CrossRef] [Green Version]
- Gaur, S.; Singh, B.; Bandyopadhyay, A.; Stisen, S.; Singh, R. Spatial pattern-based performance evaluation and uncertainty analysis of a distributed hydrological model. Hydrol. Processes 2022, 36, e14586. [Google Scholar] [CrossRef]
- Guan, D.; Inohae, H.; Li, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling Urban Land Use Change by the Integration of Cellular Automaton and Markov Model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
Model | Underlying Assumptions | Example | Software |
---|---|---|---|
Statistical | Stationarity | Logistic regression | DYNAMICA/LCM model |
Markov Models | |||
Generalized linear modeling | |||
Generalized additive modeling |
Model | Underlying Assumptions | Software |
---|---|---|
Cellular Models | Extrapolation of historical LULC patterns | CLUE-S |
Allocation based on land suitability | CA | |
Allocation by consideration of the state of neighborhood pixels | SLEUTH | |
Dynamic CA-based model | Environment Explorer | |
Model that simulates one-way transformation from one LULC class to another | GEOMOD |
Model | Underlying Assumptions | Software |
---|---|---|
Economic models | Computable general equilibrium (CGE) | FARM; GTAP; EPPA; IMAGE |
Partial equilibrium (PE) | ASMGHG; IMPACT; GTM; AgLU; FASOM; GLOBIOM |
Version | Model Features |
---|---|
CLUE (1996) |
|
CLUE-CR (1996) |
|
CLUE-CH (1999) |
|
CLUE-S (2002) |
|
Dyna-CLUE (2009) |
|
CLUE-scanner |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaur, S.; Singh, R. A Comprehensive Review on Land Use/Land Cover (LULC) Change Modeling for Urban Development: Current Status and Future Prospects. Sustainability 2023, 15, 903. https://doi.org/10.3390/su15020903
Gaur S, Singh R. A Comprehensive Review on Land Use/Land Cover (LULC) Change Modeling for Urban Development: Current Status and Future Prospects. Sustainability. 2023; 15(2):903. https://doi.org/10.3390/su15020903
Chicago/Turabian StyleGaur, Srishti, and Rajendra Singh. 2023. "A Comprehensive Review on Land Use/Land Cover (LULC) Change Modeling for Urban Development: Current Status and Future Prospects" Sustainability 15, no. 2: 903. https://doi.org/10.3390/su15020903
APA StyleGaur, S., & Singh, R. (2023). A Comprehensive Review on Land Use/Land Cover (LULC) Change Modeling for Urban Development: Current Status and Future Prospects. Sustainability, 15(2), 903. https://doi.org/10.3390/su15020903