Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources
<p>Typical PA spectrometer.</p> ">
<p>(a) Resonant PA cell with one resonator (typical resonator length of 100–300 mm) and two buffer volumes (half resonator length). (b) Differential PA cell. with two resonator tubes and acoustic filters</p> ">
<p>Schematic of the QEPAS trace gas sensor using a quantum cascade laser as an excitation source. (Reproduced with kind permission form Springer Science and Business Media [<a href="#b52-sensors-09-09616" class="html-bibr">52</a>]).</p> ">
Abstract
:1. Introduction
2. Semiconductor Lasers
3. Standard PAS
4. Differential PAS
5. QEPAS
4. Conclusions
Acknowledgments
References
- Bell, A.G. On the production and reproduction of sound by light: the photophone. Am. J. Sci. 1880, 20, 305–324. [Google Scholar]
- Viegerov, M.L. Eine Methode der gasanalyse, beruhend auf der optisch-akustischen tyndall-röntgenerscheinung. Dokl. Akad. Nauk SSSR 1938, 19, 687–688. [Google Scholar]
- Luft, K.F. Über eine neue methode der registrierenden gasanalyse mit hilfe der absorption ultraroter strahlen ohne spectrale zerlegung. Z. Tech. Phys. 1943, 5, 97–104. [Google Scholar]
- Kerr, E.L.; Atwood, J.G. The laser illuminated absorptivity spectrophone: a method for measurement of weak absorptivity in gases at laser wavelengths. Appl. Opt. 1968, 7, 915–921. [Google Scholar]
- Kreuzer, L.B.; Kenyon, N.P.; Patel, C.K.N. Air pollution: sensitive detection of ten pollutant gases by carbon monoxide and carbon dioxide lasers. Science 1972, 177, 347–349. [Google Scholar]
- Kreuzer, L.B. Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 1971, 42, 2934–2943. [Google Scholar]
- Sigrist, M.W. Air Monitoring by Spectroscopic Techniques; Sigrist, M.W., Ed.; Wiley: New York, NY, USA, 1994; pp. 163–227. [Google Scholar]
- Kosterev, A.A.; Tittel, F.K.; Serebryakov, D.V.; Malinovsky, A.L.; Morozoy, I.V. Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 2005, 76, 043105. [Google Scholar]
- Pedersen, M.; McClelland, J. Optimized capacitive MEMS microphone for photoacoustic spectroscopy (PAS) applications. Proc. SPIE 2005, 5732, 108. [Google Scholar]
- Laurila, T.; Cattaneo, H.; Koskinen, V.; Kauppinen, J.; Hernberg, R. Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection. Opt. Express 2005, 13, 2453–2458. [Google Scholar]
- Werle, P. Diode-Laser Sensors for in Situ Gas Analysis in Laser in Environmental and Life Science; Hering, P., Lay, J.P., Stry, S., Eds.; Springer-Verlag: New York, NY, USA, 2004; Volume 11, pp. 223–233. [Google Scholar]
- Tittel, F.K.; Bakhirkin, Y.; Kosterev, A.A.; Wysocki, G. Recent advances in trace gas detection using quantum and interband cascade lasers. Rev. Laser Eng. 2006, 34, 275–282. [Google Scholar]
- Beck, M.; Hofstetter, D.; Aellen, T.; Faist, J.; Oesterle, U.; Ilegems, M.; Gini, E.; Melchior, H. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 2002, 295, 301–305. [Google Scholar]
- Yu, J.S.; Slivken, S.; Evans, A.; Doris, L.; Razeghi, M. High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature. Appl. Phys. Lett. 2003, 83, 2503–2505. [Google Scholar]
- Gmachl, C.; Faist, J.; Baillargeon, J.N.; Capasso, F.; Sirtori, C.; Sivco, D.L.; Cho, A.Y. Complex-coupled quantum cascade distributed-feedback laser. IEEE Photon. Technol. Lett. 1997, 9, 1090–1092. [Google Scholar]
- Köhler, R.; Gmachl, C.; Tredicucci, A.; Capasso, F.; Sivco, D.L.; Chu, S.N.G.; Cho, A.Y. Single-mode tunable, pulsed, and continuous wave quantum-cascade distributed feedback lasers at λ ∼ 4.6–4.7 μm. Appl. Phys. Lett. 2000, 76, 1092–1094. [Google Scholar]
- Yu, J.S.; Slivken, S.; Evans, A.; Darvish, S.R.; Nguyen, J.; Razeghi, M. High-power λ ∼ 9.5 μm quantum-cascade lasers operating above room temperature in continuous-wave mode. Appl. Phys. Lett. 2006, 88, 091113–091115. [Google Scholar]
- Kosterev, A.A.; Wysocki, G.; Bakhirkin, Y.; So, S.; Lewicki, R.; Fraser, M.; Tittel, F.K.; Curl, R.F. Application of quantum cascade lasers to trace gas analysis. Appl. Phys. B 2008, 90, 165–176. [Google Scholar]
- Maulini, R.; Beck, M.; Faist, J.; Gini, E. Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers. Appl. Phys. Lett 2004, 84, 1659–1661. [Google Scholar]
- Yang, R.Q.; Bradshaw, J.L.; Bruno, J.D.; Pham, J.T.; Wortman, D.E. Midinfrared type-II interband cascade lasers. IEEE Quantum Electron 2002, 38, 559–568. [Google Scholar]
- Borri, S.; Bartalini, S.; de Natale, P.; Inguscio, M.; Gmachl, C.; Capasso, F.; Sivco, D.L.; Cho, A.Y. Frequency modulation spectroscopy by means of quantum-cascade lasers. Appl. Phys. B. 2006, 85, 223–229. [Google Scholar]
- Maddaloni, P.; Gagliardi, G.; Malara, P.; De Natale, P. A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy. Appl. Phys. B. 2005, 80, 141–145. [Google Scholar]
- Feher, M.; Jiang, Y.; Maier, J.P.; Miklos, A. Optoacoustic trace-gas monitoring with near-infrared diode lasers. Appl. Opt. 1994, 33, 1655–1658. [Google Scholar]
- Shilt, S.; Thevenaz, L. Wavelength modulation photoacoustic spectroscopy: theoretical description and experimental results. Infr. Phys. Techn. 2006, 48, 154–162. [Google Scholar]
- Lugarà, P.M.; Elia, A.; Di Franco, C. Photoacoustic spectroscopy using semiconductor laser. In An Introduction to Optoelectronic Sensors — Series in Optics and Photonics; Righini, G.C., Tajani, A., Cutolo, A., Eds.; World Scientific: Singapore, 2009; Volume 7, pp. 257–280. [Google Scholar]
- Miklos, A.; Hess, P.; Bozoki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar]
- Hess, P. Resonant photo-acoustic spectroscopy. Top. Curr. Chem. 1983, 111, 1–32. [Google Scholar]
- Li, J.; Liu, K.; Zhang, W.; Chen, W.; Gao, X. Carbon dioxide detection using NIR diode laser based wavelength modulation photoacoustic spectroscopy. Opt. Appl. 2008, 38, 341–352. [Google Scholar]
- Li, J.; Gao, X.; Li, F.; Liu, K.; Zhang, W.; Cha, H. Resonant photoacoustic detection of trace gas with DFB diode laser. Opt. Laser Technol. 2007, 39, 1144–1149. [Google Scholar]
- Besson, J.P.; Schilt, S.; Thévenaz, L. Sub-ppm multi-gas photoacoustic sensor. Spectroc. Acta A 2006, 63, 899–904. [Google Scholar]
- Webber, M.E.; Purchkarsky, M.; Patel, C.K.N. Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers. Appl. Opt. 2003, 42, 2119–2126. [Google Scholar]
- Paldus, B.A.; Spence, T.G.; Zare, R.N.; Oomens, J.; Harren, F.J.M.; Parker, D.H.; Gmachl, C.; Cappasso, F.; Sivco, D.L.; Baillargeon, J.N.; Hutchinson, A.L.; Cho, A.Y. Photoacoustic spectroscopy using quantum cascade lasers. Opt. Lett. 1999, 24, 178–180. [Google Scholar]
- Di Franco, C.; Elia, A.; Spagnolo, V.; Scamarcio, G.; Lugarà, P.M.; Ieva, E.; Cioffi, N.; Torsi, L.; Bruno, G.; Losurdo, L.; Garcia, M.A.; Wolter, S.D.; Brown, A.; Ricco, M. Optical and electronic nox sensors for applications in mechatronics. Sensors 2009, 9, 3337–3356. [Google Scholar]
- Elia, A.; Di Franco, C.; Spagnolo, V.; Lugarà, P.M.; Scamarcio, G. Quantum cascade laser-based photoacoustic sensor for trace detection of formaldehyde gas. Sensors 2009, 9, 2697–2705. [Google Scholar]
- Pushkarsky, M.; Tsekoun, A.; Dunayevskiy, I.G.; Go, R.; Patel, C.K.N. Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers. PNAS 2006, 103, 10846–10849. [Google Scholar]
- Lima, J.P.; Vargas, H.; Miklos, A.; Angelmahr, M.; Hess, P. Photoacoustic detection of NO2 and N2O using quantum cascade lasers. Appl. Phys. B 2006, 85, 279–284. [Google Scholar]
- Filho, M.B.; da Silva, M.G.; Sthel, M.S.; Schramm, D.U.; Vargas, H.; Miklós, A.; Hess, P. Ammonia detection by using quantum-cascade laser photoacoustic spectroscopy. Appl. Opt. 2006, 45, 4966–4971. [Google Scholar]
- Elia, A.; Rizzi, F.; Di Franco, C.; Lugarà, P.M.; Scamarcio, G. Quantum cascade laser-based photoacoustic spectroscopy of volatile chemicals: Application to hexamethyldisilazane. Spectroc. Acta A 2006, 64, 426–429. [Google Scholar]
- da Silva, M.G.; Vargas, H.; Miklós, A.; Hess, P. Photoacoustic detection of ozone using quantum cascade laser. Appl. Phys. B 2004, 78, 1513–1516. [Google Scholar]
- Bijnen, F.G.C.; Harren, F.J.M.; Reuss, J. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection. Rev. Sci. Instrum. 1996, 67, 2914–2923. [Google Scholar]
- Miklós, A.; Hess, P.; Mohácsi, Á.; Sneider, J.; Kamm, S.; Schäfer, S.; Scudieri, F.; Bertolotti, M. Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 μm DFB diode laser. Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena, Woodbury, NY, USA; 1999; p. 126. [Google Scholar]
- Schmohl, A.; Miklós, A.; Hess, P. Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia. Appl. Opt. 2001, 40, 2571–2578. [Google Scholar]
- Miklós, A.; Lim, C.H.; Hsiang, W.W.; Liang, G.C.; Kung, A.H.; Schmohl, A.; Hess, P. Photoacoustic measurement of methane concentrations with a compact pulsed optical parametric oscillator. Appl. Opt. 2002, 41, 2985–2993. [Google Scholar]
- Angelmahr, M.; Miklós, A.; Hess, P. Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level. Appl. Phys. B 2006, 85, 285–288. [Google Scholar]
- Costopoulos, D.; Miklós, A.; Hess, P. Detection of N2O by photoacoustic spectroscopy with a compact, pulsed optical parametric oscillator. Appl. Phys. B 2002, 75, 385–389. [Google Scholar]
- da Silva, M.G.; Miklós, A.; Falkenroth, A.; Hess, P. Photoacoustic measurement of N2O concentrations in ambient air with a pulsed optical parametric oscillator. Appl. Phys. B 2006, 82, 329–336. [Google Scholar]
- Rey, J.M.; Sigrist, M.W. Differential mode excitation photoacoustic spectroscopy: a new photoacoustic detection scheme. Rev. Scient. Instrum. 2007, 78, 063104. [Google Scholar]
- Rey, J.M.; Sigrist, M.W. New differential mode excitation photoacoustic scheme for near-infrared water vapour sensing. Sens. Actuat. B 2008, 135, 161–165. [Google Scholar]
- Kosterev, A.A.; Bakhirkin, Y.A.; Curl, R.F.; Tittel, F.K. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2002, 27, 1902–1904. [Google Scholar]
- Kosterev, A.A.; Tittel, F.K.; Serebryakov, D.; Malinovsky, A.; Morozov, A. Applications of quartz tuning fork in spectroscopic gas sensing. Rev. Sci. Instrum. 2005, 76, 043105. [Google Scholar]
- Kosterev, A.A.; Tittel, F.K. Ammonia detection by use of quartz enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser. Appl. Opt. 2004, 43, 6213–6217. [Google Scholar]
- Kosterev, A.A.; Bakhirkin, Y.A.; Tittel, F.K. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region. Appl. Phys. B 2005, 80, 133–138. [Google Scholar]
- Weidmann, D.; Kosterev, A.A.; Tittel, F.K.; Ryan, N.; McDonald, D. Application of widely electrically-tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2004, 29, 1837–1839. [Google Scholar]
- Horstjann, M.; Bakhirkin, Y.A.; Kosterev, A.A.; Curl, R.F.; Tittel, F.K. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy. Appl. Phys. B 2004, 79, 799–803. [Google Scholar]
- Schilt, S.; Kosterev, A.; Tittel, F.K. Performance evaluation of a near infrared QEPAS based ethylene sensor. Appl. Phys. B 2009, 95, 813–824. [Google Scholar]
- Ngai, A.K.Y.; Persijn, S.T.; Lindsay, D.; Kosterev, A.A.; Groβ, P.; Lee, C.J.; Cristescu, S.M.; Tittel, F.K.; Boller, K.J.; Harren, F.J.M. Continuous wave optical parametric oscillator for quartz enhanced photoacoustic trace gas sensing. Appl. Phys. B 2007, 89, 123–128. [Google Scholar]
- Wojcik, M.D.; Phillips, M.C.; Cannon, B.D.; Taubman, M.S. Gas phase photoacoustic sensor at 8.41 μm using quartz tuning forks and amplitude modulated quantum cascade lasers. Appl. Phys. B 2006, 85, 307–313. [Google Scholar]
- Lewicki, R.; Wysocki, G.; Kosterev, A.A.; Tittel, F.K. QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm. Opt. Exp. 2007, 15, 7357–7366. [Google Scholar]
- Kosterev, A.A.; Wysocki, G.; Bakhirkin, Y.; So, S.; Lewicki, R.; Fraser, M.; Tittel, F.K.; Curl, R.F. Application of quantum cascade lasers to trace gas analysis. Appl. Phys. B 2008, 90, 165–176. [Google Scholar]
- Tittel, F.K.; Richter, D.; Fried, A. Mid-infrared laser applications in spectroscopy. In Solid-State Mid-Infrared Laser Sources; Sorokina, I.T., Vodopyanov, K.L., Eds.; Springer: Berlin, Germany, 2003; Volume 89, pp. 445–510. [Google Scholar]
- Tittel, F.K.; Wysocki, G.; Kosterev, A.A.; Bakhirkin, Y. Semiconductor laser based trace gas sensor technology: recent advances and applications. In Mid-Infrared Coherent Sources and Applications; Ebrahim-Zadeh, M., Sorokina, I.T., Eds.; Springer: Berlin, Germany, 2007; pp. 467–493. [Google Scholar]
Molecule [Ref.] | Laser source | Integration time | Detection limit (SNR = 1) | PA cell |
---|---|---|---|---|
CO2 [28] | Wavelength modulated DFB diode laser; λ = 1.573 μm, P = 4.5 mW | 100 s | 30 ppm | Dual-microphone resonant cell f = 1.456 KHz |
C2H2 [29] | Wavelength modulated DFB diode laser; λ= 1.51 μm, P = 3.5 mW | 3 ms | 10 ppm | Resonant on first longitudinal mode f = 2.1 KHz |
CH4 H2O HCl [30] | Fibre-pigtailed laser diodes, λ = 1.651 μm (P = 18 mW); λ = 1.3686 μm (P = 22 mW); λ = 1.7379 μm (P = 16 mW) | 10 s | CH4: 27 ppb H2O: 5 ppb HCl: 10 ppb | Multi-gas PA resonant cell on first longitudinal mode f = 1 KHz |
NH3 [31] | Fibre amplified diode laser; λ = 1.53 μm; P = 500 mW | 10 s | 6 ppb | Resonant on first longitudinal mode f = 900 Hz |
Molecule [Ref.] | Laser source | Integration time | Detection limit (SNR = 1) | PA cell |
---|---|---|---|---|
NO [33] | RT Pulsed DFB QCL; λ = 5.3 μm, P = 2 mW | 10 s | 150 ppb | 4-microphones resonant cell on first longitudinal mode f = 1.38 KHz |
CH2O [34] | RT Pulsed DFB QCL; λ = 5.6 μm, P = 4 mW | 10 s | 150 ppb | 4-microphones resonant cell on first longitudinal mode f = 1.38 KHz |
NO2 [35] | RT cw QCL (external grating cavity) λ = 6.25 μm, P = 300 mW | 1 s | 0.5 ppb | Resonant on first longitudinal mode f = 1.8 KHz |
NO2 N2O [36] | RT Pulsed DFB QCLs; λ = 6.2 μm (P = 5 mW); λ = 8 μm (P ∼ 10 mW) | - | ∼80 ppb | Differential PA cell resonant on first longitudinal mode f = 3.8 KHz |
NH3 [37] | RT Pulsed DFB QCL; λ = 9.6 μm, P = 2 mW | - | 30 ppb | Differential PA cell resonant on first longitudinal mode f = 3.8 KHz |
HMDS* [38] | Cryogenically cooled pulsed Fabry-perot QCL λ= 8.4 μm | 10 s | 200 ppb | 4-microphones resonant cell on first longitudinal mode f = 1.38 KHz |
O3 [39] | RT Pulsed DFB QCL; λ = 9.5 μm, P ≈ mWs | - | 100 ppb | Differential PA cell resonant on first longitudinal mode f = 3.8 KHz |
Gas species | Frequency [cm−1] | Pressure [Torr] | NNEA* [cm−1W/Hz1/2] | Power [mW] | NEC** (τ = 1s) [ppm] |
---|---|---|---|---|---|
H2O (N2) | 7,306.75 | 60 | 1.9 × 10−9 | 9.5 | 0.09 |
HCN(air: 50% RH) | 6,539.11 | 60 | < 4.3 × 10−9 | 50 | 0.16 |
C2H2 (N2) | 6,523.88 | 720 | 4.1 × 10−9 | 57 | 0.03 |
NH3 (N2) | 6,528.76 | 575 | 3.1 × 10−9 | 60 | 0.06 |
C2H4 (N2) | 6,177.07 | 715 | 5.4 × 10−9 | 15 | 1.7 |
CH4 (N2+1.2% H2O) | 6,057.09 | 760 | 3.7 × 10−9 | 16 | 0.24 |
CO2 (breath) | 6,361.25 | 150 | 8.2 × 10−9 | 45 | 40 |
H2S | 6,357.63 | 780 | 5.6 × 10−9 | 45 | 5 |
CO2 (N2+1.5% H2O) | 4,991.26 | 50 | 1.4 × 10−8 | 4.4 | 18 |
CH2O | 2,804.90 | 75 | 8.7 × 10−9 | 7.2 | 0.12 |
CO (N2) | 2,196.66 | 50 | 5.3 × 10−7 | 13 | 0.5 |
CO (propylene) | 2,196.66 | 50 | 7.4 × 10−8 | 6.5 | 0.14 |
N2O (air+5% SF6) | 2,195.63 | 50 | 1.5 × 10−8 | 19 | 0.007 |
C2H5OH (N2) | 1,934.2 | 770 | 2.2 × 10−7 | 10 | 90 |
C2HF5 (N2) | 1,208.62 | 770 | 7.8 × 10−9 | 6.6 | 0.009 |
NH3 (N2) | 1,046.39 | 110 | 1.6 × 10−8 | 20 | 0.006 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Elia, A.; Lugarà, P.M.; Di Franco, C.; Spagnolo, V. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources. Sensors 2009, 9, 9616-9628. https://doi.org/10.3390/s91209616
Elia A, Lugarà PM, Di Franco C, Spagnolo V. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources. Sensors. 2009; 9(12):9616-9628. https://doi.org/10.3390/s91209616
Chicago/Turabian StyleElia, Angela, Pietro Mario Lugarà, Cinzia Di Franco, and Vincenzo Spagnolo. 2009. "Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources" Sensors 9, no. 12: 9616-9628. https://doi.org/10.3390/s91209616
APA StyleElia, A., Lugarà, P. M., Di Franco, C., & Spagnolo, V. (2009). Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources. Sensors, 9(12), 9616-9628. https://doi.org/10.3390/s91209616