Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy
"> Graphical abstract
">
<p>Photomixing spectrometer for high-resolution spectroscopy of gases.</p> ">
<p>Scanning electron microscope image of the LTG-GaAs photomixer.</p> ">
<p>a.) Rotational transitions of OCS isotopologues, L = 13.4 m, T = 294 K.b.) Spectra of vinyl chloride at ambient temperature for various path lengths. Black line 24 cm. Red line 224 cm. Green line 896 cm. Black sticks indicate the predicted transition frequencies and relative intensities for the <sup>35</sup>Cl isotopologue calculated from the spectroscopic parameters fitted elsewhere [<a href="#b28-sensors-09-09039" class="html-bibr">28</a>].</p> ">
<p>The frequency comb is mixed with the two-color beam each of the ECDLs are phase locked to the nearest mode of the frequency comb synthesizing the difference frequency between the ECDLs with an accuracy of 10<sup>−8</sup>.</p> ">
<p>Optical frequency diagram containing the regularly spaced frequency comb modes and the two ECLD modes. Note that the lower frequency ECLD is locked to the low frequency side of the FC mode whereas the higher frequency ECLD is locked to the high side.</p> ">
<p>Measured spectrum of cigarette smoke at a pressure of 2 mbar, a transition of HCOOH is observed with a path length of 20.16 m. Line intensity = 2.2 × 10<sup>−22</sup> cm<sup>−1</sup>/(molecule·cm<sup>−2</sup>). The measured datapoints (filled points) are fitted with a Lorentzian absorption profile (solid line).</p> ">
<p>Transmission spectra of DMSO at ambient temperature, with a pressure of 0.1 mbar, for path lengths of 896 cm (red) and 1,344 cm (black).</p> ">
<p>Transmission spectra of HCN at ambient temperature for J = 37 ←36. Red line fitted absorption profile.</p> ">
<p>Air broadening coefficient of HCN measured over the frequency range 530 GHz to 3.3 THz. Measured values (open points), HITRAN 2004 polynomial (dotted line), updated polynomial for HITRAN 2008 (solid line).</p> ">
Abstract
:1. Introduction
1.1. Sources
1.2. Detectors
2. Photomixing Spectrometer
2.1. Two Color Optical Source
2.2. Photomixer
2.3. Instrument Sensitivity
2.4. Frequency Metrology
3. Application to Gas Phase Spectroscopy
3.1. Detection of Atmospheric Compounds
3.2. Determination of Spectroscopic Parameters—Line Profile Analysis (HCN)
7. Conclusions
Acknowledgments
References and Notes
- Roy, P.; Rouzieres, M.; Qi, Z.M.; Chubar, O. The ailes infrared beamline on the third generation synchrotron radiation facility soleil. Infrared Phys. Techn. 2006, 49, 139–146. [Google Scholar]
- Ortega, J.M.; Glotin, F.; Prazeres, R. Extension in far-infrared of the CLIO free-electron laser. Infrared Phys. Techn. 2006, 49, 133–138. [Google Scholar]
- Blake, G.A.; Laughlin, K.B.; Cohen, R.C.; Busarow, K.L.; Gwo, D.H.; Schmuttenmaer, C.A.; Steyert, D.W.; Saykally, R.J. Tunable far infrared-laser spectrometers. Rev. Sci. Instrum. 1991, 62, 1693–1700. [Google Scholar]
- Verhoeve, P.; Zwart, E.; Versluis, M.; Drabbels, M.; Termeulen, J.J.; Meerts, W.L.; Dymanus, A.; McLay, D.B. A far infrared-laser sideband spectrometer in the frequency region 550–2,700 GHZ. Rev. Sci. Instrum. 1990, 61, 1612–1625. [Google Scholar]
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum cascade laser. Science 1994, 264, 553–556. [Google Scholar]
- Hubers, H.W.; Pavlov, S.G.; Richter, H.; Semenov, A.D.; Mahler, L.; Tredicucci, A.; Beere, H.E.; Ritchie, D.A. High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser. Appl. Phys. Lett. 2006, 89. doi: 061115. [Google Scholar]
- Helminger, P.; Messer, J.K.; Delucia, F.C. Continuously tunable coherent spectroscopy for the 0.1–1.0 THz region. Appl. Phys. Lett. 1983, 42, 309–310. [Google Scholar]
- Maestrini, A.; Ward, J.; Chattopadhyay, G.; Schlecht, E.; Mehdi, I. Terahertz sources based on frequency multiplication and their applications. Frequenz 2008, 62, 118–122. [Google Scholar]
- van Exter, M.; Fattinger, C.; Grischkowsky, D. High-brightness terahertz beams characterized with an ultrafast detector. Appl. Phys. Lett. 1989, 55, 337–339. [Google Scholar]
- Laman, N.; Harsha, S.S.; Grischkowsky, D.; Melinger, J.S. 7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features. Opt. Express 2008, 16, 4094–4105. [Google Scholar]
- Robinson, L.C. Physical Principles of Far-Infrared Radiation; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Brown, E.R.; McIntosh, K.A.; Smith, F.W.; Manfra, M.J.; Dennis, C.L. Measurements of optical-heterodyne conversion in low-temperature-grown gaas. Appl. Phys. Lett. 1993, 62, 1206–1208. [Google Scholar]
- Pine, A.S.; Suenram, R.D.; Brown, E.R.; McIntosh, K.A. A terahertz photomixing spectrometer: application to SO2 self broadening. J. Mol. Spectrosc. 1996, 175, 37–47. [Google Scholar]
- Mouret, G.; Matton, S.; Bocquet, R.; Hindle, F.; Peytavit, E.; Lampin, J.F.; Lippens, D. Far-infrared cw difference-frequency generation a using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz. Appl. Phys. B—Lasers Opt. 2004, 79, 725–729. [Google Scholar]
- Mouret, G.; Matton, S.; Bocquet, R.; Bigourd, D.; Hindle, F.; Cuisset, A.; Lampin, J.F.; Lippens, D. Anomalous dispersion measurement in terahertz frequency region by photomixing. Appl. Phys. Lett. 2006, 88, 3. [Google Scholar]
- Brown, E.R.; McIntosh, K.A.; Nichols, K.B.; Dennis, C.L. Photomixing up to 3.8-THz in low-temperature-grown gaas. Appl. Phys. Lett. 1995, 66, 285–287. [Google Scholar]
- Alouini, M.; Brunel, M.; Bretenaker, F.; Vallet, M.; Le Floch, A. Dual tunable wavelength Er, Yb: glass laser for terahertz beat frequency generation. IEEE Photonic. Tech. L. 1998, 10, 1554–1556. [Google Scholar]
- Brunel, M.; Bretenaker, F.; LeFloch, A. Tunable optical microwave source using spatially resolved laser eigenstates. Opt. Lett. 1997, 22, 384–386. [Google Scholar]
- Beck, A.; Ducournau, G.; Zaknoune, M.; Peytavit, E.; Akalin, T.; Lampin, J.F.; Mollot, F.; Hindle, F.; Yang, C.; Mouret, G. High-efficiency uni-travelling-carrier photomixer at 1.55 mu m and spectroscopy application up to 1.4 THz. Electron. Lett. 2008, 44, 1320–1345. [Google Scholar]
- Ito, H.; Furuta, T.; Nakajima, F.; Yoshino, K.; Ishibashi, T. Photonic generation of continuous THz wave using uni-traveling-carrier photodiode. J. Lightwave Technol. 2005, 23, 4016–4021. [Google Scholar]
- Duffy, S.M.; Verghese, S.; McIntosh, K.A.; Jackson, A.; Gossard, A.C.; Matsuura, S. Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power. IEEE Trans. Microw. Theory Tech. 2001, 49, 1032–1038. [Google Scholar]
- Sukhotin, M.; Brown, E.R.; Gossard, A.C.; Driscoll, D.; Hanson, M.; Maker, P.; Muller, R. Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55 mu m. Appl. Phys. Lett. 2003, 82, 3116–3118. [Google Scholar]
- Mangeney, J.; Merigault, A.; Zerounian, N.; Crozat, P.; Blary, K.; Lampin, J.F. Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In[sub 0.53]Ga[sub 0.47]As at 1.55 mu m wavelengths. Appl. Phys. Lett. 2007, 91, 241102. [Google Scholar]
- Peytavit, E.; Beck, A.; Akalin, T.; Lampin, J.F.; Hindle, F.; Yang, C.; Mouret, G. Continuous terahertz-wave generation using a monolithically integrated horn antenna. Appl. Phys. Lett. 2008, 93, 111108. [Google Scholar]
- Podobedov, V.B.; Plusquellic, D.F.; Fraser, G.T. Investigation of the water-vapor continuum in the THz region using a multipass cell. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 287–295. [Google Scholar]
- Hoshina, H.; Seta, T.; Iwamoto, T.; Hosako, I.; Otani, C.; Kasai, Y. Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer. J. Quant. Spectrosc. Radiat. Trans. 2008, 109, 2303–2314. [Google Scholar]
- Hindle, F.; Yang, C.; Cuisset, A.; Mouret, G.; Bocquet, R. Long path length cw-THz spectrometer using a multipass cell. 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, September 15-19, 2008; pp. 621–622.
- Merke, I.; Poteau, L.; Wlodarczak, G.; Bouddou, A.; Demaison, J. The millimeter-wave spectrum and structure of vinyl chloride. J Mol. Spectrosc. 1996, 177, 232–239. [Google Scholar]
- Hindle, F.; Cuisset, A.; Bocquet, R.; Mouret, G. Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification. C. R. Phys. 2008, 9, 262–275. [Google Scholar]
- Black, E.D. An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 2001, 69, 79–87. [Google Scholar]
- Matsuura, S.; Chen, P.; Blake, G.A.; Pearson, J.C.; Pickett, H.M. A tunable cavity-locked diode laser source for terahertz photomixing. IEEE Trans. Microw. Theory Tech. 2000, 48, 380–387. [Google Scholar]
- Aballea, L.; Constantin, L.F. Optoelectronic difference-frequency synthesiser: terahertz-waves for high-resolution spectroscopy. Eur. Phys. J-Appl. Phys. 2009, 45, 21201. [Google Scholar]
- Udem, T.; Holzwarth, R.; Hansch, T. Femtosecond optical frequency combs. Eur. Phys. J-Spec. Top. 2009, 172, 69–79. [Google Scholar]
- Pickett, H.M.; Poynter, R.L.; Cohen, E.A.; Delitsky, M.L.; Pearson, J.C.; Muller, H.S.P. Submillimeter, millimeter, and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 883–890. [Google Scholar]
- Yang, C.; Buldyreva, J.; Gordon, I.E.; Rohart, F.; Cuisset, A.; Mouret, G.; Bocquet, R.; Hindle, F. Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 2857–2868. [Google Scholar]
- Chen, P.; Pearson, J.C.; Pickett, H.M.; Matsuura, S.; Blake, G.A. Measurements of (NH3)-N-14 in the nu(2) = 1 state by a solid-state, photomixing, THz spectrometer, and a simultaneous analysis of the microwave, terahertz, and infrared transitions between the ground and nu(2) inversion-rotation levels. J. Mol. Spectrosc. 2006, 236, 116–126. [Google Scholar]
- Groner, P.; Medvedev, I.R.; De Lucia, F.C.; Drouin, B.J. Rotational spectrum of acetone, CH3COCH3, in the nu(17) torsional excited state. J. Mol. Spectrosc. 2008, 251, 180–184. [Google Scholar]
- Pirali, O.; Van-Oanh, N.T.; Parneix, P.; Vervloet, M.; Brechignac, P. Far-infrared spectroscopy of small polycyclic aromatic hydrocarbons. Phys. Chem. Chem. Phys. 2006, 8, 3707–3714. [Google Scholar]
- Plusquellic, D.F.; Siegrist, K.; Heilweil, E.J.; Esenturk, O. Applications of terahertz spectroscopy in biosystems. Chem Phys Chem 2007, 8, 2412–2431. [Google Scholar]
- Cuisset, A.; Mouret, G.; Pirali, O.; Roy, P.; Cazier, F.; Nouali, H.; Demaison, J. Gas-phase vibrational spectroscopy and ab initio study of organophosphorous compounds: Discrimination between species and conformers. J. Phys. Chem. B. 2008, 112, 12516–12525. [Google Scholar]
- Typke, V.; Dakkouri, M. The force field and molecular structure of dimethylsulfoxide from spectroscopic and gas electron diffraction data and ab initio calculations. J. Mol. Struct. 2001, 599, 177–193. [Google Scholar]
- Kim, S.J.; Geballe, T.R.; Noll, K.S.; Courtin, R. Clouds, haze, and CH4, CH3D, HCN, and C2H2 in the atmosphere of Titan probed via 3 [mu]m spectroscopy. Icarus 2005, 173, 522–532. [Google Scholar]
- Teanby, N.A.; Irwin, P.G.J.; de Kok, R.; Vinatier, S.; Bézard, B.; Nixon, C.A.; Flasar, F.M.; Calcutt, S.B.; Bowles, N.E.; Fletcher, L.; Howett, C.; Taylor, F.W. Vertical profiles of HCN, HC3N, and C2H2 in Titan's atmosphere derived from Cassini/CIRS data. Icarus 2007, 186, 364–384. [Google Scholar]
- Rothman, L.S.; Jacquemart, D.; Barbe, A.; Chris Benner, D.; Birk, M.; Brown, L.R.; Carleer, M.R.; Chackerian, J.C.; Chance, K.; Coudert, L.H.; Dana, V.; Devi, V.M.; Flaud, J.M.; Gamache, R.R.; Goldman, A.; Hartmann, J.M.; Jucks, K.W.; Maki, A.G.; Mandin, J.Y.; Massie, S.T.; Orphal, J.; Perrin, A.; Rinsland, C.P.; Smith, M.A.H.; Tennyson, J.; Tolchenov, R.N.; Toth, R.A.; Vander Auwera, J.; Varanasi, P.; Wagner, G. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Trans. 2005, 96, 139–204. [Google Scholar]
- Rinsland, C.P.; Devi, V.M.; Smith, M.A.H.; Benner, D.C.; Sharpe, S.W.; Sams, R.L. A multispectrum analysis of the v(1) band of (HCN)-C-12-N-14: Part II. Air- and N-2-broadening, shifts and their temperature dependences. J. Quant. Spectrosc. Radiat. Trans. 2003, 82, 343–362. [Google Scholar]
- Devi, V.M.; Benner, D.C.; Smith, M.A.H.; Rinsland, C.P.; Sharpe, S.W.; Sams, R.L. A multispectrum analysis of the 2v(2) spectral region of (HCN)-C-12-N-14: intensities, broadening and pressure-shift coefficients. J. Quant. Spectrosc. Radiat. Trans. 2004, 87, 339–366. [Google Scholar]
- Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.P.; Chance, K.; Coudert, L.H.; Dana, V.; Devi, V.M.; Fally, S.; Flaud, J.M.; Gamache, R.R.; Goldman, A.; Jacquemart, D.; Kleiner, I.; Lacome, N.; Lafferty, W.J.; Mandin, J.Y.; Massie, S.T.; Mikhailenko, S.N.; Miller, C.E.; Moazzen-Ahmadi, N.; Naumenko, O.V.; Nikitin, A.V.; Orphal, J.; Perevalov, V.I.; Perrin, A.; Predoi-Cross, A.; Rinsland, C.P.; Rotger, M.; Simecková, M.; Smith, M.A.H.; Sung, K.; Tashkun, S.A.; Tennyson, J.; Toth, R.A.; Vandaele, A.C.; Vander Auwera, J. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 533–572. [Google Scholar]
Molecule | Concentration | Detection limit |
---|---|---|
HCN | 73 ppm | 0.2 ppm |
HCOOH | 29 ppm | 2 ppm |
H2CO | 37 ppm | 3 ppm |
CO | 1030 ppm | 14 ppm |
NO | 43 ppm | 1.9 ppm |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hindle, F.; Yang, C.; Mouret, G.; Cuisset, A.; Bocquet, R.; Lampin, J.-F.; Blary, K.; Peytavit, E.; Akalin, T.; Ducournau, G. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy. Sensors 2009, 9, 9039-9057. https://doi.org/10.3390/s91109039
Hindle F, Yang C, Mouret G, Cuisset A, Bocquet R, Lampin J-F, Blary K, Peytavit E, Akalin T, Ducournau G. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy. Sensors. 2009; 9(11):9039-9057. https://doi.org/10.3390/s91109039
Chicago/Turabian StyleHindle, Francis, Chun Yang, Gael Mouret, Arnaud Cuisset, Robin Bocquet, Jean-François Lampin, Karine Blary, Emilien Peytavit, Tahsin Akalin, and Guillaume Ducournau. 2009. "Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy" Sensors 9, no. 11: 9039-9057. https://doi.org/10.3390/s91109039
APA StyleHindle, F., Yang, C., Mouret, G., Cuisset, A., Bocquet, R., Lampin, J.-F., Blary, K., Peytavit, E., Akalin, T., & Ducournau, G. (2009). Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy. Sensors, 9(11), 9039-9057. https://doi.org/10.3390/s91109039