Pushing the Limits of Biosensing: Selective Calcium Ion Detection with High Sensitivity via High-k Gate Dielectric Engineered Si Nanowire Random Network Channel Dual-Gate Field-Effect Transistors
<p>Schematic of the electrospinning system. The electrospinning process was conducted under controlled conditions with a humidity of 25% and temperature of 25 °C.</p> "> Figure 2
<p>Process flow of the template transfer method using electrospun PVP nanofibers.</p> "> Figure 3
<p>Schematic of the fabricated SiNW DG FET transducer unit.</p> "> Figure 4
<p>Fabrication flow of the Ca<sup>2+</sup>-selective EG sensing unit.</p> "> Figure 5
<p>Optical microscopic images of the fabricated high-<span class="html-italic">k</span> dielectric engineered (<b>a</b>) SiNW random network channel and (<b>b</b>) film channel DG FETs. (<b>c</b>) Thickness of the drop-casted Ca<sup>2+</sup>-selective membrane. The inset image is a photograph of the fabricated EG sensing unit.</p> "> Figure 6
<p>Electrical characteristics of the fabricated devices. Transfer characteristic curves for the top-gate operations of (<b>a</b>) SiNW and (<b>b</b>) film channel DG FETs, as well as the bottom-gate operations of (<b>c</b>) SiNW and (<b>d</b>) film channel DG FETs.</p> "> Figure 7
<p>Schematic of electrical connections in (<b>a</b>) SG mode and (<b>b</b>) DG mode for the sensor platform. (<b>c</b>) Cross-sectional view of the MOSCAP structure of high-<span class="html-italic">k</span> gate dielectric engineered DG FET. (<b>d</b>) Schematic of the electrical equivalent circuit.</p> "> Figure 8
<p>pH sensing characteristics of high-<span class="html-italic">k</span> gate dielectric engineered DG FETs. Transfer characteristic curves of the SiNW channel device in (<b>a</b>) SG and (<b>b</b>) DG mode with varying pH values. Transfer characteristic curves of the film channel device in the (<b>d</b>) SG and (<b>e</b>) DG mode with varying pH values. pH sensitivities of the (<b>c</b>) SiNW and (<b>f</b>) film channel devices.</p> "> Figure 9
<p>Non-ideal effects of high-<span class="html-italic">k</span> gate dielectric engineered DG FETs during pH sensing operations. Hysteresis effects of SiNW and film channel devices in the (<b>a</b>) SG and (<b>b</b>) DG modes. Drift effects of SiNW and film channel devices in the (<b>c</b>) SG and (<b>d</b>) DG modes.</p> "> Figure 10
<p>Ca<sup>2+</sup> sensing characteristics of high-<span class="html-italic">k</span> gate dielectric engineered DG FETs. Transfer characteristic curves of the SiNW channel device in the (<b>a</b>) SG and (<b>b</b>) DG modes with varying Ca<sup>2+</sup> concentrations. Transfer characteristic curves of the film channel device in the (<b>d</b>) SG and (<b>e</b>) DG modes with varying Ca<sup>2+</sup> concentrations. Ca<sup>2+</sup> sensitivities of the (<b>c</b>) SiNW and (<b>f</b>) film channel devices.</p> "> Figure 11
<p>Non-ideal effects of high-<span class="html-italic">k</span> gate dielectric engineered DG FETs with Ca<sup>2+</sup> sensing operations. Hysteresis effect of high-<span class="html-italic">k</span> gate dielectric engineered DG FETs in the (<b>a</b>) SG and (<b>b</b>) DG modes. Drift effects of high-k gate dielectric engineered DG FETs in the (<b>c</b>) SG and (<b>d</b>) DG modes.</p> "> Figure 12
<p>Ca<sup>2+</sup>-selective sensing characteristics of high-<span class="html-italic">k</span> gate dielectric engineered DG FETs. Various ion (H<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, and Ca<sup>2+</sup>) sensitivities of (<b>a</b>) SiNW channel device in SG mode, (<b>b</b>) film channel device in SG mode, (<b>c</b>) SiNW channel device in DG mode, and (<b>d</b>) film channel device in DG mode.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formation of SiNW Random Network Channel via the Template Transfer Method
2.3. Fabrication of the SiNW DG FET Transducer Unit
2.4. Fabrication of Ca2+-Selective EG Sensing Unit
2.5. Device Characterization
3. Results
3.1. Electrical Characteristics of High-k Gate Dielectric Engineered SiNW Channel DG FETs
3.2. Self-Amplification Capabilities of High-k Gate Dielectric Engineered DG FETs
3.3. pH Sensing Characteristics of High-k Gate Dielectric Engineered SiNW Channel DG FETs
3.4. Ca2+-Selective Sensing Characteristics of the High-k Gate Dielectric Engineered SiNW Channel DG FETs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, E.M.; Pollak, M.; Seidman, C.E.; Seidman, J.G.; Chou, Y.-H.W.; Riccardi, D.; Hebert, S.C. Calcium-ion–sensing cell-surface receptors. N. Engl. J. Med. 1995, 333, 234–240. [Google Scholar]
- Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Fluorescent fiber-optic calcium sensor for physiological measurements. Anal. Chem. 1996, 68, 1414–1418. [Google Scholar]
- Weaver, C.M.; Peacock, M. Calcium. Adv. Nutr. 2019, 10, 546–548. [Google Scholar] [CrossRef]
- Balk, E.M.; Adam, G.P.; Langberg, V.N.; Earley, A.; Clark, P.; Ebeling, P.R.; Mithal, A.; Rizzoli, R.; Zerbini, C.A.F.; Pierroz, D.D.; et al. Global dietary calcium intake among adults: A systematic review. Osteoporos. Int. 2017, 28, 3315–3324. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Mehtab, S. Calcium(II)-selective potentiometric sensor based on α-furildioxime as neutral carrier. Sens. Actuators B Chem. 2007, 123, 429–436. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Yang, X.; Luo, Z.; Zhang, J.; Li, G. All-solid-state blood calcium sensors based on screen-printed poly(3,4-ethylenedioxythiophene) as the solid contact. Sens. Actuators B Chem. 2012, 173, 630–635. [Google Scholar] [CrossRef]
- Bedlechowicz, I.; Sokalski, T.; Lewenstam, A.; Maj-Zurawska, M. Calcium ion-selective electrodes under galvanostatic current control. Sens. Actuators B Chem. 2005, 108, 836–839. [Google Scholar]
- Kim, S.; Park, J.W.; Kim, D.; Kim, D.; Lee, I.-H.; Jon, S. Bioinspired colorimetric detection of calcium(ii) ions in serum using calsequestrin-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 4138–4141. [Google Scholar]
- Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70–71. [Google Scholar] [CrossRef]
- Cao, S.; Sun, P.; Xiao, G.; Tang, Q.; Sun, X.; Zhao, H.; Zhao, S.; Lu, H.; Yue, Z. ISFET-based sensors for (bio)chemical applications: A review. Electrochem. Sci. Adv. 2022, 4, e2100207. [Google Scholar]
- Archbold, G.; Parra, C.; Carrillo, H.; Mouazen, A.M. Towards the implementation of isfet sensors for in-situ and real-time chemical analyses in soils: A practical review. Comput. Electron. Agric. 2023, 209, 107828. [Google Scholar] [CrossRef]
- Srikanya, D.; Bhat, A.M.; Sahu, C. Design and analysis of high-performance double-gate ZnO nano-structured thin-film ISFET for pH sensing applications. Microelectron. J. 2023, 137, 105811. [Google Scholar]
- Rovira, M.; Lafaye, C.; Wang, S.; Fernandez-Sanchez, C.; Saubade, M.; Liu, S.-C.; Jimenez-Jorquera, C. Analytical assessment of sodium ISFET based sensors for sweat analysis. Sens. Actuators B Chem. 2023, 393, 134135. [Google Scholar]
- van der Spiegel, J.; Lauks, I.; Chan, P.; Babic, D. The extended gate chemically sensitive field effect transistor as multi-species microprobe. Sens. Actuators 1983, 4, 291–298. [Google Scholar] [CrossRef]
- Slewa, L.H.; Abbas, T.A.; Ahmed, N.M. Effect of Sn doping and annealing on the morphology, structural, optical, and electrical properties of 3D (micro/nano) V2O5 sphere for high sensitivity pH-EGFET sensor. Sens. Actuators B Chem. 2020, 305, 127515. [Google Scholar]
- Wang, J.-L.; Yang, P.-Y.; Hsieh, T.-Y.; Hwang, C.-C.; Juang, M.-H. pH-sensing characteristics of hydrothermal Al-doped ZnO nanostructures. J. Nanomater. 2013, 2013, e152079. [Google Scholar]
- Sabah, F.A.; Ahmed, N.M.; Hassan, Z.; Almessiere, M.A. Influence of CuS membrane annealing time on the sensitivity of EGFET pH sensor. Mater. Sci. Semicond. Process. 2017, 71, 217–225. [Google Scholar] [CrossRef]
- Madeira, G.D.M.; Mello, N.P.D.; Faleiros, M.C.; Mulato, M.C. Model improvement for super-Nernstian pH sensors: The effect of surface hydration. J. Mater. Sci. 2021, 56, 2738–2747. [Google Scholar] [CrossRef]
- Jang, H.-J.; Bae, T.-E.; Cho, W.-J. Improved sensing performance of polycrystalline-silicon based dual-gate ion-sensitive field-effect transistors using high-k stacking engineered sensing membrane. Appl. Phys. Lett. 2012, 100, 253703. [Google Scholar] [CrossRef]
- Khwairakpam, D.S.; Pukhrambam, P.D. Sensitivity optimization of a double-gated ISFET pH-sensor with HfO2/SiO2 gate dielectric stack. Microelectron. J. 2021, 118, 105282. [Google Scholar] [CrossRef]
- Lu, C.-H.; Hou, T.-H.; Pan, T.-M. High-performance double-gate α-InGaZnO ISFET pH sensor using a HfO2 gate dielectric. IEEE Trans. Electron Devices 2018, 65, 237–242. [Google Scholar] [CrossRef]
- Kumar, N.; Bhatt, D.; Sutradhar, M.; Panda, S. Interface mechanisms involved in a-IGZO based dual gate ISFET pH sensor using Al2O3 as the top gate dielectric. Mater. Sci. Semicond. Process. 2020, 119, 105239. [Google Scholar] [CrossRef]
- Schmidt, V.; Wittemann, J.V.; Senz, S.; Gösele, U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 2009, 21, 2681–2702. [Google Scholar] [CrossRef]
- Raman, S.; Sankar, A.R.; Sindhuja, M. Advances in silicon nanowire applications in energy generation, storage, sensing, and electronics: A review. Nanotechnology 2023, 34, 182001. [Google Scholar] [CrossRef]
- Hasan, M.; Huq, M.F.; Mahmood, Z.H. A review on electronic and optical properties of silicon nanowire and its different growth techniques. Springerplus 2013, 2, 151. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Kim, K.; Yoon, J.-S.; Rim, T.; Meyyappan, M.; Baek, C.-K. Optimization of signal to noise ratio in silicon nanowire ISFET sensors. IEEE Sens. J. 2017, 17, 2792–2796. [Google Scholar] [CrossRef]
- Kim, S.; Rim, T.; Kim, K.; Lee, U.; Baek, E.; Lee, H.; Baek, C.K.; Meyyappan, M.; Deen, M.J.; Lee, J.S. Silicon nanowire ion sensitive field effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics. Analyst 2011, 136, 5012–5016. [Google Scholar] [CrossRef] [Green Version]
- Clément, N.; Nishiguchi, K.; Dufreche, J.F.; Guerin, D.; Fujiwara, A.; Vuillaume, D. A Silicon nanowire ion-sensitive field-effect transistor with elementary charge sensitivity. Appl. Phys. Lett. 2011, 98, 014104. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.R.; Alam, M.A. Design considerations of silicon nanowire biosensors. IEEE Trans. Electron Devices 2007, 54, 3400–3408. [Google Scholar] [CrossRef]
- Kim, K.; Park, C.; Rim, T.; Meyyappan, M.; Lee, J.-S. Electrical and pH sensing characteristics of si nanowire-based suspended FET biosensors. In Proceedings of the 14th IEEE International Conference on Nanotechnology, Toronto, ON, Canada, 18–21 August 2014. [Google Scholar]
- Tsai, C.-N.; Chou, J.-C.; Sun, T.-P.; Hsiung, S.-K. Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode. Sens. Actuators B Chem. 2005, 108, 877–882. [Google Scholar] [CrossRef]
- Chou, J.-C.; Weng, C.-Y. Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET. Mater. Chem. Phys. 2001, 71, 120–124. [Google Scholar] [CrossRef]
- Bousse, L.; Mostarshed, S.; van der Schoot, B.; de Rooij, N.F. Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators. Sens. Actuators B Chem. 1994, 17, 157–164. [Google Scholar] [CrossRef]
- Jamasb, S.; Collins, S.; Smith, R.L. A physical model for drift in pH ISFETs. Sens. Actuators B Chem. 1998, 49, 146–155. [Google Scholar] [CrossRef]
- Bousse, L.; Bergveld, P. The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs. Sens. Actuators 1984, 6, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.-H.; Cho, B.-W.; Kim, C.-S.; Sohn, B.-K. Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET. Sens. Actuators B Chem. 1996, 34, 441–445. [Google Scholar]
- Zeng, Z.; Wei, W.; Li, B.; Gao, M.; Chim, W.K.; Zhu, C. Low drift reference-less ISFET comprising two graphene films with different engineered sensitivities. ACS Appl. Electron. Mater. 2022, 4, 416–423. [Google Scholar]
- Bakker, E.; Pretsch, E.; Bühlmann, P. Selectivity of potentiometric ion sensors. Anal. Chem. 2000, 72, 1127–1133. [Google Scholar] [CrossRef]
- Tran, T.N.T.; Qiu, S.; Chung, H.-J. Potassium ion selective electrode using polyaniline and matrix-supported ion-selective PVC membrane. IEEE Sens. J. 2018, 18, 9081–9087. [Google Scholar] [CrossRef]
- Chen, X.-W.; Huang, S.-R.; Huang, N.-T. Dual ion-selective membrane deposited ion-sensitive field-effect transistor (DISM-ISFET) integrating whole blood processing microchamber for in situ blood ion testing. In Proceedings of the 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), Munich, Germany, 15–19 January 2023. [Google Scholar]
- van den Berg, A.; Grisel, A.; Verney-Norberg, E. An ISFET-based calcium sensor using a photopolymerized polysiloxane membrane. Sens. Actuators B Chem. 1991, 4, 235–238. [Google Scholar]
Operating Electrode | Channel Type | VTH (V) | ION/OFF (A/A) | μFE (cm2/V·s) | SS (mV/dec) |
---|---|---|---|---|---|
Top gate | SiNW | −0.5 | 2.7 × 106 | 308.6 | 136.1 |
Film | −0.8 | 1.1 × 106 | 280.91 | 144.2 | |
Bottom gate | SiNW | −1.5 | 1.7 × 105 | 159.6 | 172.1 |
Film | −2.4 | 7.4 × 105 | 134.2 | 181.7 |
Operation Mode | Channel Type | pH Sensitivity (mV/pH) | VH (mV) | RD (mV/h) | VH-to-pH Sensitivity | RD-to-pH Sensitivity |
---|---|---|---|---|---|---|
SG mode | SiNW | 57.74 | 4.85 | 6.25 | 8.3% | 10.82% |
Film | 58.79 | 2.22 | 4.71 | 3.77% | 8.01% | |
DG mode | SiNW | 325.38 | 12.13 | 14.37 | 3.72% | 4.41% |
Film | 247.05 | 12.06 | 13.38 | 4.88% | 5.41% |
Operation Mode | Channel Type | Ca2+ Sensitivity (mV/dev) | VH (mV) | RD (mV/h) | VH-to-Ca2+ Sensitivity | RD-to-Ca2+ Sensitivity |
---|---|---|---|---|---|---|
SG mode | SiNW | 37.44 | 3.65 | 7.59 | 9.74% | 20.27% |
Film | 34.45 | 3.06 | 6.69 | 8.88% | 19.41% | |
DG mode | SiNW | 208.25 | 13.60 | 13.22 | 6.53% | 6.34% |
Film | 139.41 | 12.76 | 13.38 | 9.15% | 9.59% |
Operation Mode | Channel Type | pH Sensitivity (mV/pH) | Na+ Sensitivity (mV/dec) | K+ Sensitivity (mV/dec) | Ca2+ Sensitivity (mV/dec) |
---|---|---|---|---|---|
SG mode | SiNW | 2.56 | 2.98 | 2.50 | 37.44 |
Film | 1.57 | 2.12 | 2.66 | 34.45 | |
DG mode | SiNW | 15.03 | 16.30 | 14.18 | 208.25 |
Film | 8.47 | 17.60 | 14.95 | 139.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyun, T.-H.; Cho, W.-J. Pushing the Limits of Biosensing: Selective Calcium Ion Detection with High Sensitivity via High-k Gate Dielectric Engineered Si Nanowire Random Network Channel Dual-Gate Field-Effect Transistors. Sensors 2023, 23, 6720. https://doi.org/10.3390/s23156720
Hyun T-H, Cho W-J. Pushing the Limits of Biosensing: Selective Calcium Ion Detection with High Sensitivity via High-k Gate Dielectric Engineered Si Nanowire Random Network Channel Dual-Gate Field-Effect Transistors. Sensors. 2023; 23(15):6720. https://doi.org/10.3390/s23156720
Chicago/Turabian StyleHyun, Tae-Hwan, and Won-Ju Cho. 2023. "Pushing the Limits of Biosensing: Selective Calcium Ion Detection with High Sensitivity via High-k Gate Dielectric Engineered Si Nanowire Random Network Channel Dual-Gate Field-Effect Transistors" Sensors 23, no. 15: 6720. https://doi.org/10.3390/s23156720