Smartphone Technology to Remotely Measure Postural Sway during Double- and Single-Leg Squats in Adults with Femoroacetabular Impingement and Those with No Hip Pain
<p>The TelePhysio app that is installed on the participant’s smartphone (<b>A1</b>) and the web-based interface (<b>A2</b>) that is controlled from the clinician’s web browser. Double-leg (<b>B1</b>,<b>B2</b>) and single-leg (<b>C1</b>,<b>C2</b>) squat tasks. Smartphone inside the black pouch strapped around the waist at the lower back. Arrows indicate the smartphone accelerometer axes.</p> "> Figure 2
<p>(<b>A</b>) Raw acceleration in x, y, and z direction (accx, accy, and accz, respectively, and (<b>B</b>) identification of squat repetition using angular velocity. Angular velocity was processed by first filtering with a Butterworth lowpass filter (10 Hz, 4th order, and zerolag), followed by rectifying the signal and normalizing it to its maximum peak value. The first red vertical line represents the beginning of the squat by lowering the body. The second red vertical line represents raising the body. The last vertical line represents the end of the 3 squat repetitions.</p> "> Figure 3
<p>Smartphone sway measurements on the sagittal axis (x, medio-lateral) for double-leg squats (DLS) and single-leg squats (SLS) in both healthy and FAI adult participants. The SLS for FAI participants is with the injured leg. Sway measurements include average acceleration magnitude from the mean (aamx), root-mean-square acceleration (rmsx), range acceleration (rx), and approximate entropy (apenx). *, **, ***, and **** denote <span class="html-italic">p</span>-values of <span class="html-italic">p</span> < 0.05, <span class="html-italic">p</span> < 0.01, <span class="html-italic">p</span> < 0.005, and <span class="html-italic">p</span> < 0.001, respectively.</p> "> Figure 4
<p>Smartphone sway measurements on the transverse axis (y) for double-leg squats (DLS) and single-leg squats (SLS) in both healthy and FAI adult participants. The SLS for FAI participants is with the injured leg. Sway measurements include average acceleration magnitude from the mean (aamy), root-mean-square acceleration (rmsy), range acceleration (ry), and approximate entropy (apeny). **, ***, and **** denote <span class="html-italic">p</span>-values of <span class="html-italic">p</span> < 0.05, <span class="html-italic">p</span> < 0.01, <span class="html-italic">p</span> < 0.005, and <span class="html-italic">p</span> < 0.001, respectively.</p> "> Figure 5
<p>Smartphone sway measurements on the frontal axis (z, anterior–posterior) for double-leg squats (DLS) and single-leg squats (SLS) in both healthy and FAI adult participants. The SLS for FAI participants is with the injured leg. Sway measurements include average acceleration magnitude from the mean (aamz), root-mean-square acceleration (rmsz), range acceleration (rz), and approximate entropy (apenz). *, **, ***, and **** denote <span class="html-italic">p</span>-values of <span class="html-italic">p</span> < 0.05, <span class="html-italic">p</span> < 0.01, <span class="html-italic">p</span> < 0.005, and <span class="html-italic">p</span> < 0.001, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Protocol
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Association of TelePhysio Sway Measurements with Force Plate CoP Measurements
3.2. Between-Sessions Reliability of TelePhysio Sway Measurements
3.3. Differences in DLS and SLS Sway between Healthy and FAI Adults
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bell, D.R.; Padua, D.; Clark, M.A. Muscle strength and flexibility characteristics of people displaying excessive medial knee displacement. Arch. Phys. Med. Rehabil. 2008, 89, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Olivier, B.; Quinn, S.-L.; Benjamin, N.; Green, A.C.; Chiu, J.; Wang, W. Single-Leg Squat Delicacies—The Position of the Nonstance Limb is an Important Consideration. J. Sport Rehabil. 2019, 28, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Boyd, K.T.; Peirce, N.S.; Batt, M.E. Common hip injuries in sport. Sport. Med. 1997, 24, 273–288. [Google Scholar] [CrossRef] [PubMed]
- DeAngelis, A.N.; Busconi, B.D. Assessment and differential diagnosis of the painful hip. Clin. Orthop. Relat. Res. 2003, 406, 11–18. [Google Scholar] [CrossRef]
- Cheatham, S.W.; Stull, K.R.; Fantigrassi, M.; Montel, I. Hip Musculoskeletal Conditions and Associated Factors That Influence Squat Performance: A Systematic Review. J. Sport Rehabil. 2018, 27, 263–273. [Google Scholar] [CrossRef]
- Mengarelli, A.; Verdini, F.; Cardarelli, S.; Di Nardo, F.; Burattini, L.; Fioretti, S. Balance assessment during squatting exercise: A comparison between laboratory grade force plate and a commercial, low-cost device. J. Biomech. 2018, 71, 264–270. [Google Scholar] [CrossRef]
- McMullen, K.L.; Cosby, N.L.; Hertel, J.; Ingersoll, C.D.; Hart, J.M. Lower extremity neuromuscular control immediately after fatiguing hip-abduction exercise. J. Athl. Train. 2011, 46, 607–614. [Google Scholar] [CrossRef]
- Hatton, A.L.; Kemp, J.L.; Brauer, S.G.; Clark, R.A.; Crossley, K.M. Impairment of dynamic single-leg balance performance in individuals with hip chondropathy. Arthritis Care Res. 2014, 66, 709–716. [Google Scholar] [CrossRef]
- Hatton, A.L.; Hug, F.; Chen, S.H.; Reid, C.; Sorensen, N.A.; Tucker, K. The effects of acute experimental hip muscle pain on dynamic single-limb balance performance in healthy middle-aged adults. Gait Posture 2016, 50, 201–206. [Google Scholar] [CrossRef]
- Brigo, E.; Rintala, A.; Kossi, O.; Verwaest, F.; Vanhoof, O.; Feys, P.; Bonnechère, B. Using Telehealth to Guarantee the Continuity of Rehabilitation during the COVID-19 Pandemic: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 10325. [Google Scholar] [CrossRef]
- Marshall, C.J.; El-Ansary, D.; Pranata, A.; Ganderton, C.; O’donnell, J.; Takla, A.; Tran, P.; Wickramasinghe, N.; Tirosh, O. Validity and Reliability of a Novel Smartphone Tele-Assessment Solution for Quantifying Hip Range of Motion. Sensors 2022, 22, 8154. [Google Scholar] [CrossRef] [PubMed]
- Moral-Munoz, J.A.; Esteban-Moreno, B.; Herrera-Viedma, E.; Cobo, M.J.; Pérez, I.J. Smartphone Applications to Perform Body Balance Assessment: A Standardized Review. J. Med. Syst. 2018, 42, 119. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.-R.; Chiu, Y.-L.; Chiang, S.-L.; Chen, H.-Y.; Sung, W.-H. Development of a Smartphone-Based Balance Assessment System for Subjects with Stroke. Sensors 2019, 20, 88. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Wysocki, R.W.; Fernandez, J.J.; Cohen, M.S.; Simcock, X.C. Patient Perspectives on Telemedicine During the COVID-19 Pandemic. Hand 2021, 18, 522–526. [Google Scholar] [CrossRef]
- Devi, D.H.; Duraisamy, K.; Armghan, A.; Alsharari, M.; Aliqab, K.; Sorathiya, V.; Das, S.; Rashid, N. 5G Technology in Healthcare and Wearable Devices: A Review. Sensors 2023, 23, 2519. [Google Scholar] [CrossRef]
- Subhan, F.; Mirza, A.; Su’ud, M.B.M.; Alam, M.M.; Nisar, S.; Habib, U.; Iqbal, M.Z. AI-Enabled Wearable Medical Internet of Things in Healthcare System: A Survey. Appl. Sci. 2023, 13, 1394. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Martinez-Mendez, R.; Sekine, M.; Tamura, T. Postural sway parameters using a triaxial accelerometer: Comparing elderly and young healthy adults. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 899–910. [Google Scholar] [CrossRef]
- Kavanagh, J.J. Lower trunk motion and speed-dependence during walking. J. Neuroeng. Rehabil. 2009, 6, 9. [Google Scholar] [CrossRef]
- Beyea, J.; McGibbon, C.A.; Sexton, A.; Noble, J.; O’connell, C. Convergent Validity of a Wearable Sensor System for Measuring Sub-Task Performance during the Timed Up-and-Go Test. Sensors 2017, 17, 934. [Google Scholar] [CrossRef]
- Hatton, A.L.; Crossley, K.M.; Hug, F.; Bouma, J.; Ha, B.; Spaulding, K.L.; Tucker, K. Acute experimental hip muscle pain alters single-leg squat balance in healthy young adults. Gait Posture 2015, 41, 871–876. [Google Scholar] [CrossRef]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.; Lawrence Erlbaum Associates: Malwah, NJ, USA, 2003. [Google Scholar]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Hsieh, K.L.; Roach, K.L.; Wajda, D.A.; Sosnoff, J.J. Smartphone technology can measure postural stability and discriminate fall risk in older adults. Gait Posture 2019, 67, 160–165. [Google Scholar] [CrossRef]
- Kosse, N.M.; Caljouw, S.R.; Vervoort, D.; Vuillerme, N.; Lamoth, C. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch. Ann. Biomed. Eng. 2014, 43, 1935–1946. [Google Scholar] [CrossRef]
- Ozinga, S.J.; Machado, A.G.; Koop, M.M.; Rosenfeldt, A.B.; Alberts, J.L. Objective assessment of postural stability in Parkinson’s disease using mobile technology. Mov. Disord. 2015, 30, 1214–1221. [Google Scholar] [CrossRef]
- Moe-Nilssen, R.; Helbostad, J.L. Trunk accelerometry as a measure of balance control during quiet standing. Gait Posture 2001, 16, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Malloy, P.; Neumann, D.A.; Kipp, K. Hip Biomechanics During a Single-Leg Squat: 5 Key Differences Between People with Femoroacetabular Impingement Syndrome and Those Without Hip Pain. J. Orthop. Sports Phys. Ther. 2019, 49, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Madeleine, P.; Madsen, T. Changes in the amount and structure of motor variability during a deboning process are associated with work experience and neck–shoulder discomfort. Appl. Ergon. 2009, 40, 887–894. [Google Scholar] [CrossRef]
- Georgoulis, A.D.; Moraiti, C.; Ristanis, S.; Stergiou, N. A Novel approach to measure variability in the anterior cruciate ligament deficient knee during walking: The use of the approximate entropy in orthopaedics. J. Clin. Monit. Comput. 2006, 20, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Heiderscheit, B.C.; Hamill, J.; van Emmerik, R.E. Variability of stride characteristics and joint coordination among individuals with unilateral patellofemoral pain. J. Appl. Biomech. 2002, 18, 110–121. [Google Scholar] [CrossRef]
- Srinivasan, D.; Mathiassen, S.E. Motor variability in occupational health and performance. Clin. Biomech. 2012, 27, 979–993. [Google Scholar] [CrossRef]
- Grouios, G.; Ziagkas, E.; Loukovitis, A.; Chatzinikolaou, K.; Koidou, E. Accelerometers in Our Pocket: Does Smartphone Accelerometer Technology Provide Accurate Data? Sensors 2022, 23, 192. [Google Scholar] [CrossRef] [PubMed]
- Kos, A.; Tomažič, S.; Umek, A. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications. Sensors 2016, 16, 477. [Google Scholar] [CrossRef]
- Chen, K.-H.; Hsu, Y.-W.; Yang, J.-J.; Jaw, F.-S. Evaluating the specifications of built-in accelerometers in smartphones on fall detection performance. Instrum. Sci. Technol. 2017, 46, 194–206. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Household Use of Information Technology. 2018. Available online: https://www.abs.gov.au/statistics/industry/technology-and-innovation/household-use-information-technology/latest-release (accessed on 3 March 2023).
CoP Medio-Lateral | Cop Anterior–Posterior | ||||||||
---|---|---|---|---|---|---|---|---|---|
Range | RMS | Velocity Mean | Velocity Max | Range | RMS | Velocity Mean | Velocity Max | ||
Smartphone Sway Measurement | aamx | 0.56 ** | −0.53 ** | 0.48 ** | 0.41 ** | 0.27 | −0.07 | 0.47 ** | 0.33 |
rmsx | 0.37 | −0.51 ** | 0.16 | 0.20 | 0.01 | −0.03 | 0.43 * | 0.06 | |
rx | 0.31 * | −0.12 | 0.08 | 0.23 | 0.26 | −0.03 | 0.20 | −0.02 | |
apenx | 0.31 | −0.24 | 0.29 | 0.44 ** | 0.00 | −0.16 | 0.42 * | 0.19 | |
aamy | 0.04 | −0.01 | 0.19 | 0.28 | 0.19 | −0.04 | 0.71 ** | 0.36 | |
rmsy | 0.06 | −0.03 | 0.15 | 0.31 * | 0.15 | −0.01 | 0.68 ** | 0.32 | |
ry | 0.06 | −0.04 | 0.32 | 0.35 | 0.23 | −0.01 | 0.62 ** | 0.29 | |
apeny | 0.05 | 0.03 | 0.27 | 0.34 * | 0.07 | −0.09 | 0.28 | 0.23 | |
aamz | 0.06 | −0.17 | 0.16 | 0.21 | −0.11 | −0.27 | 0.36 | 0.25 | |
rmsz | 0.02 | −0.16 | 0.25 | 0.21 | 0.03 | −0.14 | 0.49 ** | 0.32 | |
rz | 0.02 | −0.12 | 0.31 | 0.30 | 0.01 | −0.12 | 0.53 ** | 0.36 | |
apenz | 0.11 | −0.06 | 0.33 | 0.47 ** | −0.02 | −0.06 | 0.44 * | 0.20 |
CoP Medio-Lateral | Cop Anterior–Posterior | ||||||||
---|---|---|---|---|---|---|---|---|---|
Range | RMS | Velocity Mean | Velocity Max | Range | RMS | Velocity Mean | Velocity Max | ||
Smartphone Sway Measurement | aamx | 0.15 | −0.03 | 0.43 ** | 0.50 ** | 014 | 0.05 | 0.40 ** | 0.50 ** |
rmsx | 0.23 | 0.02 | 0.46 ** | 0.53 ** | 0.11 | 0.05 | 0.45 ** | 0.54 ** | |
rx | 0.17 | 0.03 | 0.37 ** | 0.42 ** | 0.18 | 0.16 | 0.32 ** | 0.52 ** | |
apenx | 0.14 | −0.02 | 0.23 | 0.27 | 0.21 | −0.03 | 0.41 ** | 0.45 ** | |
aamy | 0.17 | −0.11 | 0.43 ** | 0.34 | 0.34 * | −0.10 | 0.66 ** | 0.43 ** | |
rmsy | 0.14 | −0.13 | 0.38 ** | 0.38 | 0.36 * | −0.14 | 0.64 ** | 0.45 ** | |
ry | 0.15 | −0.06 | 0.35 * | 0.34 | 0.36 * | −0.11 | 0.47 ** | 0.46 ** | |
apeny | 0.15 | −0.04 | 0.10 | 0.29 | 0.26 * | 0.01 | 0.53 ** | 0.42 ** | |
aamz | −0.08 | −0.06 | 0.05 | 0.08 | 0.03 | 0.12 | 0.17 | 0.23 * | |
rmsz | −0.09 | −0.07 | 0.03 | −0.09 | 0.04 | 0.08 | 0.12 | 0.33 * | |
rz | −0.11 | −0.11 | 0.11 | −0.04 | 0.07 | 0.16 | 0.22 | 0.31 * | |
apenz | 0.26 | −0.05 | 0.24 | 0.23 | 0.22 | −0.16 | 0.35 * | 0.37 ** |
Laboratory Mean ± SD | Home Mean ± SD | p-Values | ICC −95%–+95% CI | SEM | MDC | ||
---|---|---|---|---|---|---|---|
Smartphone Sway Measurement | aamx | 0.26 ± 0.11 | 0.26 ± 0.11 | 0.76 | 0.73 0.62–0.81 | 0.06 | 0.66 |
aamy | 0.71 ± 0.40 | 0.77 ± 0.46 | 0.02 | 0.85 0.76–0.91 | 0.17 | 1.13 | |
aamz | 0.83 ± 0.56 | 0.76 ± 0.45 | 0.08 | 0.73 0.62–0.82 | 0.26 | 1.42 | |
rmsx | 1.02 ± 0.02 | 1.02 ± 0.01 | 0.96 | 0.63 0.48–0.74 | 0.01 | 0.26 | |
rmsy | 1.19 ± 0.47 | 1.22 ± 0.57 | 0.52 | 0.45 0.27–0.60 | 0.39 | 1.72 | |
rmsz | 1.17 ± 0.23 | 1.13 ± 0.14 | 0.01 | 0.65 0.50–0.75 | 0.11 | 0.93 | |
rx | 1.82 ± 0.76 | 1.92 ± 0.88 | 0.23 | 0.48 0.31–0.62 | 0.59 | 2.13 | |
ry | 4.65 ± 2.62 | 4.96 ± 3.07 | 0.10 | 0.80 0.71–0.87 | 1.27 | 3.12 | |
rz | 3.88 ± 1.96 | 3.63 ± 1.81 | 0.05 | 0.79 0.70–0.86 | 0.86 | 2.57 | |
apenx | 0.49 ± 0.13 | 0.52 ± 0.10 | 0.002 | 0.72 0.59–0.81 | 0.06 | 0.68 | |
apeny | 0.49 ± 0.11 | 0.53 ± 0.10 | 0.002 | 0.68 0.51–0.79 | 0.06 | 0.68 | |
apenz | 0.52 ± 0.15 | 0.50 ± 0.13 | 0.09 | 0.77 0.67–0.84 | 0.07 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marshall, C.J.; Ganderton, C.; Feltham, A.; El-Ansary, D.; Pranata, A.; O’Donnell, J.; Takla, A.; Tran, P.; Wickramasinghe, N.; Tirosh, O. Smartphone Technology to Remotely Measure Postural Sway during Double- and Single-Leg Squats in Adults with Femoroacetabular Impingement and Those with No Hip Pain. Sensors 2023, 23, 5101. https://doi.org/10.3390/s23115101
Marshall CJ, Ganderton C, Feltham A, El-Ansary D, Pranata A, O’Donnell J, Takla A, Tran P, Wickramasinghe N, Tirosh O. Smartphone Technology to Remotely Measure Postural Sway during Double- and Single-Leg Squats in Adults with Femoroacetabular Impingement and Those with No Hip Pain. Sensors. 2023; 23(11):5101. https://doi.org/10.3390/s23115101
Chicago/Turabian StyleMarshall, Charlotte J., Charlotte Ganderton, Adam Feltham, Doa El-Ansary, Adrian Pranata, John O’Donnell, Amir Takla, Phong Tran, Nilmini Wickramasinghe, and Oren Tirosh. 2023. "Smartphone Technology to Remotely Measure Postural Sway during Double- and Single-Leg Squats in Adults with Femoroacetabular Impingement and Those with No Hip Pain" Sensors 23, no. 11: 5101. https://doi.org/10.3390/s23115101
APA StyleMarshall, C. J., Ganderton, C., Feltham, A., El-Ansary, D., Pranata, A., O’Donnell, J., Takla, A., Tran, P., Wickramasinghe, N., & Tirosh, O. (2023). Smartphone Technology to Remotely Measure Postural Sway during Double- and Single-Leg Squats in Adults with Femoroacetabular Impingement and Those with No Hip Pain. Sensors, 23(11), 5101. https://doi.org/10.3390/s23115101