AI-Enabled Wearable Medical Internet of Things in Healthcare System: A Survey
Abstract
:1. Introduction
2. Literature Review
Internet of Things in Healthcare
3. Wearable Technologies for Different Body Parts
3.1. Smart Thermometer
3.2. Smart Helmet
3.3. Wrist Band
3.4. Smart Watches
3.5. Smart Glasses
3.6. Smart Jacket
3.7. Smart Socks
3.8. Data Gloves
3.9. Smart Mask
3.10. Smart Stethoscope
3.11. Smart Ring
3.12. Smart Belt
3.13. Smart Patches
3.14. Smart Contact Lens
3.15. Smart Nutrition System
3.16. Smart Mood Monitoring System
3.17. Smart Rehabilitation System
3.18. COVID-19 Detection System
4. Issues and Challenges in Medical Wearable Devices
4.1. Environment Condition
4.2. Comfort
4.3. Self-Governing
4.4. Compact
4.5. Ergonomics
4.6. Size/Weight
4.7. Attachment to Body
4.8. Device and Body Safety
4.9. Accessibility
4.10. Sensory Interaction
4.11. Heat Effects
4.12. Reliability
4.13. Side Effects
4.14. High Power Consumption
4.15. Wearable/Implantable
4.16. Normalization
4.17. Information Privacy and Security
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tahir, H.; Tahir, R.; McDonald-Maier, K. On the security of consumer wearable devices in the Internet of Things. PLoS ONE 2018, 13, e0195487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, S. Omdia: China’s healthcare equipment market to hit 600USD by 2025. Omnia Health 2021, 1. Available online: https://insights.omnia-health.com/market-updates/omdia-chinas-healthcare-equipment-market-hit-600bn-2025 (accessed on 6 September 2021).
- Yuehong, Y.; Zeng, Y.; Chen, X.; Fan, Y. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 2016, 1, 3–13. [Google Scholar]
- Saarikko, T.; Westergren, U.H.; Blomquist, T. The Internet of Things: Are you ready for what’s coming? Bus. Horizons 2017, 60, 667–676. [Google Scholar] [CrossRef]
- Dang, L.M.; Piran, M.J.; Han, D.; Min, K.; Moon, H. A survey on internet of things and cloud computing for healthcare. Electronics 2019, 8, 768. [Google Scholar] [CrossRef] [Green Version]
- Mistry, I.; Tanwar, S.; Tyagi, S.; Kumar, N. Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mech. Syst. Signal Process. 2020, 135, 106382. [Google Scholar] [CrossRef]
- Chehri, A.; Mouftah, H.T. Internet of Things-integrated IR-UWB technology for healthcare applications. Concurr. Comput. Pract. Exp. 2020, 32, e5454. [Google Scholar] [CrossRef]
- Farahat, I.; Tolba, A.; Elhoseny, M.; Eladrosy, W. A secure real-time internet of medical smart things (IOMST). Comput. Electr. Eng. 2018, 72, 455–467. [Google Scholar] [CrossRef]
- Hiremath, S.; Yang, G.; Mankodiya, K. Wearable Internet of Things: Concept, architectural components and promises for person-centered healthcare. In Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Athens, Greece, 3–5 November 2014; pp. 304–307. [Google Scholar]
- Poongodi, T.; Krishnamurthi, R.; Indrakumari, R.; Suresh, P.; Balusamy, B. Wearable devices and IoT. In A Handbook of Internet of Things in Biomedical and Cyber Physical System; Springer: Berlin/Heidelberg, Germany, 2020; pp. 245–273. [Google Scholar]
- Surantha, N.; Atmaja, P.; Wicaksono, M. A review of wearable internet-of-things device for healthcare. Procedia Comput. Sci. 2021, 179, 936–943. [Google Scholar] [CrossRef]
- Schrader, L.; Vargas Toro, A.; Konietzny, S.; Rüping, S.; Schäpers, B.; Steinböck, M.; Krewer, C.; Müller, F.; Güttler, J.; Bock, T. Advanced sensing and human activity recognition in early intervention and rehabilitation of elderly people. J. Popul. Ageing 2020, 13, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Zhu, R.; Que, R.Y. A wireless portable system with microsensors for monitoring respiratory diseases. IEEE Trans. Biomed. Eng. 2012, 59, 3110–3116. [Google Scholar] [PubMed]
- Channa, A.; Popescu, N.; Skibinska, J.; Burget, R. The rise of wearable devices during the COVID-19 pandemic: A systematic review. Sensors 2021, 21, 5787. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Nisar, S.; Khan, M.A.; Mohsan, S.A.H.; Noor, F.; Mostafa, H.; Marey, M. A Privacy-Preserved Internet-of-Medical-Things Scheme for Eradication and Control of Dengue Using UAV. Micromachines 2022, 13, 1702. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. Real-world data for the drug development in the digital era. J. Artif. Intell. Technol. 2022, 2, 42–46. [Google Scholar] [CrossRef]
- Masood, F.; Masood, J.; Zahir, H.; Driss, K.; Mehmood, N.; Farooq, H. Novel Approach to Evaluate Classification Algorithms and Feature Selection Filter Algorithms using Medical Data. J. Comput. Cogn. Eng. 2022, 1, 1. [Google Scholar] [CrossRef]
- Nisar, S.; Zuhaib, M.A.; Ulasyar, A.; Tariq, M. A privacy-preserved and cost-efficient control scheme for coronavirus outbreak using call data record and contact tracing. IEEE Consum. Electron. Mag. 2020, 10, 104–110. [Google Scholar] [CrossRef]
- Nisar, S.; Wakeel, A.; Tahir, W.; Tariq, M. Minimizing Viral Transmission in COVID-19 Like Pandemics: Technologies, Challenges, and Opportunities. IEEE Sens. J. 2022. [Google Scholar] [CrossRef]
- Nisar, S.; Zuhaib, M.A.; Ulasyar, A.; Tariq, M. A robust tracking system for COVID-19 like pandemic using advanced hybrid technologies. Computing 2021, 1–15. [Google Scholar] [CrossRef]
- Giovanni, P. Francesco Pegreffi1, Ivan Julio Salce Cutipa2; Michael Anthonius Lim3, Domenico Topa4, Angela Maietta Latessa5. In Quaderni di Diritto delle Attività motorie e Sportive; Bononia University Press: Bologna, Italy, 2022; p. 39. [Google Scholar]
- Istepanian, R.S.; Hu, S.; Philip, N.Y.; Sungoor, A. The potential of Internet of m-health Things “m-IoT” for non-invasive glucose level sensing. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 5264–5266. [Google Scholar]
- Drew, B.J.; Califf, R.M.; Funk, M.; Kaufman, E.S.; Krucoff, M.W.; Laks, M.M.; Macfarlane, P.W.; Sommargren, C.; Swiryn, S.; Van Hare, G.F. Practice standards for electrocardiographic monitoring in hospital settings: An American Heart Association scientific statement from the Councils on Cardiovascular Nursing, Clinical Cardiology, and Cardiovascular Disease in the Young: Endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical-Care Nurses. Circulation 2004, 110, 2721–2746. [Google Scholar]
- Islam, S.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.S. The internet of things for health care: A comprehensive survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Alshamrani, M. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. J. King Saud-Univ.-Comput. Inf. Sci. 2021, 34, 4687–4701. [Google Scholar] [CrossRef]
- Kang, J.J.; Larkin, H. Intelligent personal health devices converged with internet of things networks. J. Mob. Multimed. 2017, 12, 197–212. [Google Scholar]
- Zhang, L.Z. Patient Body Temperature Monitoring System and Device Based on Internet of Things. Chinese Patent CN103577688A, 12 February 2014. [Google Scholar]
- Jian, Z.; Zhanli, W.; Zhuang, M. Temperature Measurement System and Method Based on Home Gateway. Chinese Patent CN201110148247, 5 December 2012. [Google Scholar]
- Milacski, Z.Á.; Ludersdorfer, M.; Lőrincz, A.; Smagt, P.v.d. Robust detection of anomalies via sparse methods. In Proceedings of the International Conference on Neural Information Processing, Istanbul, Turkey, 9–12 November 2015; pp. 419–426. [Google Scholar]
- Jara, A.J.; Zamora-Izquierdo, M.A.; Skarmeta, A.F. Interconnection framework for mHealth and remote monitoring based on the internet of things. IEEE J. Sel. Areas Commun. 2013, 31, 47–65. [Google Scholar] [CrossRef]
- Larson, E.C.; Goel, M.; Boriello, G.; Heltshe, S.; Rosenfeld, M.; Patel, S.N. SpiroSmart: Using a microphone to measure lung function on a mobile phone. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 280–289. [Google Scholar]
- Pang, Z.; Tian, J.; Chen, Q. Intelligent packaging and intelligent medicine box for medication management towards the Internet-of-Things. In Proceedings of the 16th International Conference on Advanced Communication Technology, Pyeongchang, Republic of Korea, 16–19 February 2014; pp. 352–360. [Google Scholar]
- Laranjo, I.; Macedo, J.; Santos, A. Internet of Things for medication control: E-health architecture and service implementation. Int. J. Reliab. Qual. Healthc. 2013, 2, 1–15. [Google Scholar] [CrossRef]
- Fan, Y.J.; Yin, Y.H.; Da Xu, L.; Zeng, Y.; Wu, F. IoT-based smart rehabilitation system. IEEE Trans. Ind. Inform. 2014, 10, 1568–1577. [Google Scholar]
- Yang, G.; Deng, J.; Pang, G.; Zhang, H.; Li, J.; Deng, B.; Pang, Z.; Xu, J.; Jiang, M.; Liljeberg, P.; et al. An IoT-enabled stroke rehabilitation system based on smart wearable armband and machine learning. IEEE J. Transl. Eng. Health Med. 2018, 6, 2100510. [Google Scholar] [CrossRef]
- Nazir, S.; Ali, Y.; Ullah, N.; García-Magariño, I. Internet of things for healthcare using effects of mobile computing: A systematic literature review. Wirel. Commun. Mob. Comput. 2019, 2019, 5931315. [Google Scholar] [CrossRef]
- Green, M.S.; Mathew, J.J.; Gundigi Venkatesh, A.; Green, P.; Tariq, R. Utilization of smartphone applications by anesthesia providers. Anesthesiol. Res. Pract. 2018, 2018, 8694357. [Google Scholar] [CrossRef] [Green Version]
- Dsouza, D.J.; Srivatsava, S.; Prithika, R. IoT based smart wheelchair for HealthCare. Int. J. Recent. Technol. Eng. 2019, 8, 534–539. [Google Scholar] [CrossRef]
- Taiwo, O.; Ezugwu, A.E. Smart healthcare support for remote patient monitoring during COVID-19 quarantine. Inform. Med. Unlocked 2020, 20, 100428. [Google Scholar] [CrossRef]
- Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The future of healthcare internet of things: A survey of emerging technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [Google Scholar] [CrossRef]
- Cosoli, G.; Spinsante, S.; Scardulla, F.; D’Acquisto, L.; Scalise, L. Wireless ECG and cardiac monitoring systems: State of the art, available commercial devices and useful electronic components. Measurement 2021, 177, 109243. [Google Scholar] [CrossRef]
- Okazaki, K.; Okazaki, K.; Uesugi, M.; Matsusima, T.; Hataya, H. Evaluation of the accuracy of a non-invasive hemoglobin-monitoring device in schoolchildren. Pediatr. Neonatol. 2022, 63, 19–24. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, J.; Xie, Y.; Gao, F.; Xu, S.; Wu, X.; Ye, Z. Wearable health devices in health care: Narrative systematic review. JMIR mHealth uHealth 2020, 8, e18907. [Google Scholar] [CrossRef]
- Zhang, G.J. Internet-of-Things Human Body Data Blood Pressure Collecting and Transmitting Device. Chinese Patent CN202821362U, 27 March 2013. [Google Scholar]
- Chamberlain, S.D.; Singh, I.; Ariza, C.; Daitch, A.; Philips, P.; Dalziel, B.D. Real-time detection of COVID-19 epicenters within the United States using a network of smart thermometers. MedRxiv 2020. [Google Scholar] [CrossRef]
- Grande, D.; Mitra, N.; Marti, X.L.; Merchant, R.; Asch, D.; Dolan, A.; Sharma, M.; Cannuscio, C. Consumer views on using digital data for COVID-19 control in the United States. JAMA Netw. Open 2021, 4, e2110918. [Google Scholar] [CrossRef]
- Javaid, M.; Khan, I.H. Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 Pandemic. J. Oral Biol. Craniofacial Res. 2021, 11, 209–214. [Google Scholar] [CrossRef]
- Sampson, M.; Hickey, V.; Huber, J.; Davila, P.; Eager, J.; Davies, S.; Dandoy, C. Continuous Temperature Monitoring in the Inpatient Setting Using Temptraq. In Pediatric Blood & Cancer; Wiley: Hoboken, NJ, USA, 2018; Volume 65. [Google Scholar]
- Tamura, T.; Huang, M.; Togawa, T. Current developments in wearable thermometers. Adv. Biomed. Eng. 2018, 7, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, M.; Syamsudin, H.; Al-Zubaidi, S.; AKS, R.R.; Yusuf, E. Novel COVID-19 detection and diagnosis system using IOT based smart helmet. Int. J. Psychosoc. Rehabil. 2020, 24, 2296–2303. [Google Scholar]
- Nasajpour, M.; Pouriyeh, S.; Parizi, R.M.; Dorodchi, M.; Valero, M.; Arabnia, H.R. Internet of Things for current COVID-19 and future pandemics: An exploratory study. J. Healthc. Inform. Res. 2020, 4, 325–364. [Google Scholar] [CrossRef]
- Grzesiak, E.; Bent, B.; McClain, M.T.; Woods, C.W.; Tsalik, E.L.; Nicholson, B.P.; Veldman, T.; Burke, T.W.; Gardener, Z.; Bergstrom, E.; et al. Assessment of the feasibility of using noninvasive wearable biometric monitoring sensors to detect influenza and the common cold before symptom onset. JAMA Netw. Open 2021, 4, e2128534. [Google Scholar] [CrossRef] [PubMed]
- Masood, A.; Khan, K.B.; Younas, T.; Khalid, A.R. Design of wearable prototype smart wristband for remote health monitoring using Internet of things. In Proceedings of the International Conference on Intelligent Technologies and Applications, Durham, UK, 10–12 July 2019; pp. 3–13. [Google Scholar]
- Bohr, A.; Memarzadeh, K. Current healthcare, big data, and machine learning. In Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–24. [Google Scholar]
- Gruenerbl, A.; Pirkl, G.; Monger, E.; Gobbi, M.; Lukowicz, P. Smart-watch life saver: Smart-watch interactive-feedback system for improving bystander CPR. In Proceedings of the 2015 ACM International Symposium on Wearable Computers, Osaka, Japan, 7–11 September 2015; pp. 19–26. [Google Scholar]
- Issa, B.A.; Thabit, Q.Q. Review in IoT for Healthcare in Our Life. Iraqi J. Electr. Electron. Eng. 2021, 18, 9–20. [Google Scholar] [CrossRef]
- Sriramalakshmi, P.; Vondivillu, S.T.; Govind, A.S.K. Role of IoT, AI, and Big Data Analytics in Healthcare Industry. In Transformation in Healthcare with Emerging Technologies; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022; pp. 19–43. [Google Scholar]
- Samyoun, S.; Shubha, S.S.; Mondol, M.A.S.; Stankovic, J.A. iWash: A smartwatch handwashing quality assessment and reminder system with real-time feedback in the context of infectious disease. Smart Health 2021, 19, 100171. [Google Scholar] [CrossRef] [PubMed]
- Udgata, S.K.; Suryadevara, N.K. Advances in sensor technology and IOT framework to mitigate COVID-19 challenges. In Internet of Things and Sensor Network for COVID-19; Springer: Berlin/Heidelberg, Germany, 2021; pp. 55–82. [Google Scholar]
- Steindler, D. Protection of Personal Data in Healthcare and New Technologies; Právnická Fakulta, Univerzita Karlova: Stare Mesto, Czech Republic, 2022. [Google Scholar]
- Mohammed, H.M. Ebola virus disease: Effects of respiratory protection on healthcare workers. Egypt. J. Chest Dis. Tuberc. 2015, 64, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Baek, K. Developing a smart multifunctional outdoor jacket with wearable sensing technology for user health and safety. Multimed. Tools Appl. 2021, 80, 32273–32310. [Google Scholar] [CrossRef]
- Gorli, R. Smart Jacket for Industrial Employee Health and Safety. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2017, 2, 390–392. [Google Scholar]
- Jovanov, E.; Milenkovic, A.; Otto, C.; De Groen, P.C. A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J. Neuroeng. Rehabil. 2005, 2, 6. [Google Scholar] [CrossRef]
- Oks, A.; Katashev, A.; Bernans, E.; Abolins, V. Smart socks system as an equipment to analyze temporal parameters of human gait and running. In Proceedings of the Environment. Technologies. Resources, Proceedings of the International Scientific and Practical Conference, Rezekne, Latvia, 15–17 June 2017; Volume 3, pp. 238–241. [Google Scholar]
- Armstrong, D.G.; Boulton, A.J.; Bus, S.A. Diabetic foot ulcers and their recurrence. N. Engl. J. Med. 2017, 376, 2367–2375. [Google Scholar] [CrossRef]
- Balmain, B.N.; Tuttle, N.; Bailey, J.; Cheng, K.; Duryea, M.; Houlihan, J.; Wotherspoon, J.; Morris, N. Using smart socks to detect step-count at slow walking speeds in healthy adults. Int. J. Sport. Med. 2019, 40, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Torreblanca González, J.; Gómez-Martín, B.; Hernández Encinas, A.; Martín-Vaquero, J.; Queiruga-Dios, A.; Martínez-Nova, A. The use of infrared thermography to develop and assess a wearable sock and monitor foot temperature in diabetic subjects. Sensors 2021, 21, 1821. [Google Scholar] [CrossRef]
- Dangerfield, M.I.; Ward, K.; Davidson, L.; Adamian, M. Initial experience and usage patterns with the owlet smart sock monitor in 47,495 newborns. Glob. Pediatr. Health 2017, 4, 2333794X17742751. [Google Scholar] [CrossRef] [Green Version]
- Bonafide, C.P.; Jamison, D.T.; Foglia, E.E. The emerging market of smartphone-integrated infant physiologic monitors. JAMA 2017, 317, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Caeiro-Rodríguez, M.; Otero-González, I.; Mikic-Fonte, F.A.; Llamas-Nistal, M. A systematic review of commercial smart gloves: Current status and applications. Sensors 2021, 21, 2667. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Hubble, L.J.; Martín, A.; Kumar, R.; Barfidokht, A.; Kim, J.; Musameh, M.M.; Kyratzis, I.L.; Wang, J. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sens. 2017, 2, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Raad, M.W.; Deriche, M.A.; Hafeedh, A.B.; Almasawa, H.; Jofan, K.B.; Alsakkaf, H.; Bahumran, A.; Salem, M. An IOT based Wearable Smart Glove for Remote Monitoring of Rheumatoid Arthritis Patients. Biosignals 2019, 2019, 224–228. [Google Scholar]
- Kalavakonda, R.R.; Masna, N.V.R.; Mandal, S.; Bhunia, S. A smart mask for active defense against airborne pathogens. Sci. Rep. 2021, 11, 19910. [Google Scholar] [CrossRef]
- Cheng, K.K.; Lam, T.H.; Leung, C.C. Wearing face masks in the community during the COVID-19 pandemic: Altruism and solidarity. Lancet 2022, 399, e39–e40. [Google Scholar] [CrossRef]
- Hyysalo, J.; Dasanayake, S.; Hannu, J.; Schuss, C.; Rajanen, M.; Leppänen, T.; Doermann, D.; Sauvola, J. Smart mask–Wearable IoT solution for improved protection and personal health. Internet Things 2022, 18, 100511. [Google Scholar] [CrossRef]
- Ghatak, B.; Banerjee, S.; Ali, S.B.; Bandyopadhyay, R.; Das, N.; Mandal, D.; Tudu, B. Design of a Self-powered Smart Mask for COVID-19. arXiv 2020, arXiv:2005.08305. [Google Scholar]
- Yim, W.; Cheng, D.; Patel, S.H.; Kou, R.; Meng, Y.S.; Jokerst, J.V. KN95 and N95 respirators retain filtration efficiency despite a loss of dipole charge during decontamination. ACS Appl. Mater. Interfaces 2020, 12, 54473–54480. [Google Scholar] [CrossRef]
- Abdallah, M.; Hassan, R.; Jeremy, E. A novel smart stethoscope for health-care providers. In Proceedings of the 2017 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, MA, USA, 3–5 November 2017; pp. 1–4. [Google Scholar]
- Yilmaz, G.; Rapin, M.; Pessoa, D.; Rocha, B.M.; de Sousa, A.M.; Rusconi, R.; Carvalho, P.; Wacker, J.; Paiva, R.P.; Chételat, O. A wearable stethoscope for long-term ambulatory respiratory health monitoring. Sensors 2020, 20, 5124. [Google Scholar] [CrossRef]
- Klum, M.; Urban, M.; Tigges, T.; Pielmus, A.G.; Feldheiser, A.; Schmitt, T.; Orglmeister, R. Wearable cardiorespiratory monitoring employing a multimodal digital patch stethoscope: Estimation of ECG, PEP, LVET and respiration using a 55 mm single-lead ECG and phonocardiogram. Sensors 2020, 20, 2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Wang, B.; Liu, Y.; Fan, M.; Ji, Y.; Xu, H.; Xu, M.; Chen, S.; Li, Q.; Zhang, Z. Lung auscultation of hospitalized patients with SARS-CoV-2 pneumonia via a wireless stethoscope. Int. J. Med. Sci. 2021, 18, 1415. [Google Scholar] [CrossRef] [PubMed]
- Lomas, N. NFC Ring Puts Wireless Transfer Tech On Your Finger So You Can Fist-Bump Phones. Join TechCrunch 2013, 1, 1. [Google Scholar]
- Shenoy, M. Sensor information processing for wearable iot devices. In Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm; Springer: Berlin/Heidelberg, Germany, 2020; pp. 177–200. [Google Scholar]
- Iqbal, S.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in healthcare wearable devices. NPJ Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Chu, D.T.; Vu Ngoc, S.M.; Vu Thi, H.; Nguyen Thi, Y.V.; Ho, T.T.; Hoang, V.T.; Singh, V.; Al-Tawfiq, J.A. COVID-19 in Southeast Asia: Current status and perspectives. Bioengineered 2022, 13, 3797–3809. [Google Scholar] [CrossRef]
- Piuzzi, E.; Pisa, S.; Pittella, E.; Podestà, L.; Sangiovanni, S. Wearable Belt With Built-In Textile Electrodes for Cardio—Respiratory Monitoring. Sensors 2020, 20, 4500. [Google Scholar] [CrossRef]
- Sardini, E.; Serpelloni, M. Instrumented wearable belt for wireless health monitoring. Procedia Eng. 2010, 5, 580–583. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Su, M.; Zhang, M.; Li, R. Integrating digital technologies and public health to fight COVID-19 pandemic: Key technologies, applications, challenges and outlook of digital healthcare. Int. J. Environ. Res. Public Health 2021, 18, 6053. [Google Scholar] [CrossRef]
- Nakamura, Y.; Matsuda, Y.; Arakawa, Y.; Yasumoto, K. Waistonbelt x: A belt-type wearable device with sensing and intervention toward health behavior change. Sensors 2019, 19, 4600. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Lee, M.; Rhee, Y.; Lee, S.; Jeong, Y.R.; Kang, S.; Naqi, M.; Hong, S. Smart patch for skin temperature: Preliminary study to evaluate psychometrics and feasibility. Sensors 2021, 21, 1855. [Google Scholar] [CrossRef] [PubMed]
- Affordable Smart Patches Can Revolutionise Patient Monitoring. Available online: https://www.vttresearch.com/en/news-and-ideas/affordable-smart-patches-can-revolutionise-patient-monitoring (accessed on 16 March 2021).
- Shi, M.; Wu, H.; Zhang, J.; Han, M.; Meng, B.; Zhang, H. Self-powered wireless smart patch for healthcare monitoring. Nano Energy 2017, 32, 479–487. [Google Scholar] [CrossRef]
- Luo, N.; Dai, W.; Li, C.; Zhou, Z.; Lu, L.; Poon, C.C.; Chen, S.C.; Zhang, Y.; Zhao, N. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv. Funct. Mater. 2016, 26, 1178–1187. [Google Scholar] [CrossRef]
- Mansouri, K.; Medeiros, F.A.; Tafreshi, A.; Weinreb, R.N. Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: Safety, tolerability, and reproducibility in patients with glaucoma. Arch. Ophthalmol. 2012, 130, 1534–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farandos, N.M.; Yetisen, A.K.; Monteiro, M.J.; Lowe, C.R.; Yun, S.H. Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater. 2015, 4, 792–810. [Google Scholar] [CrossRef]
- Alexeev, V.L.; DAs, S.; Finegold, D.N.; AsHER, S.A. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem. 2004, 50, 2353–2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keum, D.H.; Kim, S.K.; Koo, J.; Lee, G.H.; Jeon, C.; Mok, J.W.; Mun, B.H.; Lee, K.J.; Kamrani, E.; Joo, C.K.; et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci. Adv. 2020, 6, eaba3252. [Google Scholar] [CrossRef] [Green Version]
- Allam, F.; Nossai, Z.; Gomma, H.; Ibrahim, I.; Abdelsalam, M. Allam, F.; Nossai, Z.; Gomma, H.; Ibrahim, I.; Abdelsalam, M. A recurrent neural network approach for predicting glucose concentration in type-1 diabetic patients. In Engineering Applications of Neural Networks; Springer: Berlin/Heidelberg, Germany, 2011; pp. 254–259. [Google Scholar]
- Alam, M.G.R.; Abedin, S.F.; Moon, S.I.; Hong, C.S. CNN based mood mining through IoT-based physiological sensors observation. Korean Soc. Inf. Sci. Technol. Acad. Pap. 2017, 1301–1303. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07207559&language=ko_KR&hasTopBanner=true (accessed on 11 December 2022).
- Ahmad, E. Meezaj: An interactive system for real-time mood measurement and reflection based on internet of things. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 629–636. [Google Scholar] [CrossRef]
- Pandey, P.S. Machine learning and IoT for prediction and detection of stress. In Proceedings of the 2017 17th International Conference on Computational Science and Its Applications (ICCSA), Trieste, Italy, 3–6 July 2017; pp. 1–5. [Google Scholar]
- Bisio, I.; Garibotto, C.; Lavagetto, F.; Sciarrone, A. When eHealth meets IoT: A smart wireless system for post-stroke home rehabilitation. IEEE Wirel. Commun. 2019, 26, 24–29. [Google Scholar] [CrossRef]
- Vedaei, S.S.; Fotovvat, A.; Mohebbian, M.R.; Rahman, G.M.; Wahid, K.A.; Babyn, P.; Marateb, H.R.; Mansourian, M.; Sami, R. COVID-SAFE: An IoT-based system for automated health monitoring and surveillance in post-pandemic life. IEEE Access 2020, 8, 188538. [Google Scholar] [CrossRef] [PubMed]
- Display, T.; Processor, D. Apple introduces Apple watch series 2, the ultimate device for a healthy life. Newsroom 2016, 1. Available online: https://www.apple.com/lt/newsroom/2016/09/07Apple-Introduces-Apple-Watch-Series-2-The-Ultimate-Device-For-A-Healthy-Life/ (accessed on 7 September 2016).
- Rodriguez, S. These smart glasses offer a glimpse at the future Apple and Facebook are planning. Title PRESS 2021, 1. Available online: https://www.cnbc.com/2021/11/20/these-smart-glasses-offer-a-glimpse-at-the-future-apple-and-facebook-are-planning.html (accessed on 20 November 2021).
- Peters, A. This Smart Jacket Helps Doctors Diagnose Pneumonia in Toddlers. FAST Company, 2017; Volume 1, pp. 1–2. Available online: https://www.fastcompany.com/3066978/this-smart-jacket-helps-doctors-diagnose-pneumonia-in-toddlers (accessed on 17 October 2002).
- Now, S. Introducing the new Oura ring generation 3. Oura 2021, 1, 1. [Google Scholar]
- Harrison, L. Triggerfish pressure sensor promising. Ophthalmol. News 2019, 1, 1. [Google Scholar]
- Cho, S.; Ensari, I.; Weng, C.; Kahn, M.G.; Natarajan, K. Factors affecting the quality of person-generated wearable device data and associated challenges: Rapid systematic review. JMIR mHealth uHealth 2021, 9, e20738. [Google Scholar] [CrossRef]
- Kumar, D.; Grover, H.S. Cryptanalysis of a secure and lightweight authentication protocol for wearable devices environment. In Proceedings of the 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2018; pp. 1063–1068. [Google Scholar]
- Mishra, S.S.; Rasool, A. IoT health care monitoring and tracking: A survey. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 1052–1057. [Google Scholar]
- Ransford, B.; Clark, S.S.; Kune, D.F.; Fu, K.; Burleson, W.P. Design challenges for secure implantable medical devices. In Proceedings of the DAC Design Automation Conference 2012, San Francisco, CA, USA, 3–7 June 2012; pp. 157–173. [Google Scholar]
- Fuller, D.; Colwell, E.; Low, J.; Orychock, K.; Tobin, M.A.; Simango, B.; Buote, R.; Van Heerden, D.; Luan, H.; Cullen, K.; et al. Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: Systematic review. JMIR mHealth uHealth 2020, 8, e18694. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, X.; Zhang, S.; Zhang, X.; Kong, W.; Zhang, T. Software for wearable devices: Challenges and opportunities. In Proceedings of the 2015 IEEE 39th Annual Computer Software and Applications Conference, Taichung, Taiwan, 1–5 July 2015; Volume 3, pp. 592–597. [Google Scholar]
- Li, Z.; Wang, B.; Li, J.; Hua, Y.; Zhang, S. Local differential privacy protection for wearable device data. PLoS ONE 2022, 17, e0272766. [Google Scholar] [CrossRef]
Applications | Details | Technology | References |
---|---|---|---|
Electrocardiogram (Monitoring, Detection) | A wireless procurement IoT-related ECG examining device | IoT framework Anomaly detection | [23,25] |
Glucose Level
Sensing (Monitoring) | Blood sugar level estimating noninvasive device comprising a sugar level accumulator | IoT, IPv6 | [23,25,26] |
Body Temperature (Monitoring) | A thermometer along with an IoT channel are used in this application | Thermometer, IoT System, Sensors | [25,27,28] |
Blood Pressure (Monitoring) | To create an IoT-based BP monitor, BP KIT meter and mobile device are interleaved | IoT frameworks,
Pressure Sensor | [25,29] |
Oxygen Saturation (Monitoring) | Real-time data transfer between patient and practitioner is done by joining oximeter | Oximeter, IoT system | [25,30,31] |
Medicine
Management (Monitoring, Detection) | A medication managing system scrutinizes machines validity using I2Pack and the iMedBox | RFID, IoT | [25,32,33] |
Rehabilitation
System (Monitoring, Detection) | A proposed IOT based system that continuously gives details of the mental state of patients | IoT, Machine Learning | [25,34,35] |
Smart Devices (Monitoring, Detection | Data is captured, processed, and sent in real time | IoT, Big Data | [25,36,37] |
Wheelchair
Management (Monitoring, Detection) | Fully autonomous wheelchair app comprising potential wheelchair design | IoT Frameworks, Machine Learning | [25,38] |
Vital
Healthcare
Services (Monitoring) | Cardiovascular diseases, aptness, and nervous | Machine Learning, Cloud Computing, Big Data | [25,39,40,41] |
Imminent
Healthcare (Monitoring, Prevention) | Mobilized IoT-based services, designs, and applications help practitioners | IoT Net framework, Intelligent Security Model | [40,42,43] |
Wearable Device | Monitoring Parameters | Application Position | References |
---|---|---|---|
Smart Thermometer (Monitoring) | Fever Monitoring, COVID-19 | Armpit, Chest, Ear | [48,95] |
Smart Helmet (Monitoring, Detection) | Body temperature,
imaging,
location monitoring, crowds monitoring, head safety | Head | [50,51] |
Smart Watch (Monitoring, Detection) | Body temperature,
fall detection,
chronic disease, pulse rate, viral diseases fitness | Wrist | [57,58,105] |
Smart Glasses (Monitoring, Prevention) | Body temperature,
crowd monitoring,
Ebola, COVID-19 location tracking | Eyes, Head | [60,106] |
Smart Jacket (Monitoring) | Pneumonia,
body temperature,
lungs sounds, oxygen saturation, safety of workers | Chest, Arm | [107] |
Smart Socks (Monitoring) | Diabetic infection,
injury,
pulse rate, Parkinson’s, oxygen saturation | Feet | [69,70] |
Data Gloves (Monitoring, Prevention) | Rheumatoid arthritis, Parkinson’s, COVID-19 | Fingers, Hands | [72] |
Smart Mask (Monitoring, Detection) | Infections, pandemics,
nursing flu,
influenza, COVID-19, respiratory virus | Face, Nose | [76,78,78] |
Smart Stethoscope (Monitoring, Detection) | Heart beat sounds, stomach sounds pneumonia, breathing, influenza, flu | Chest, Ears, Neck | [80] |
Smart Ring (Monitoring, Detection) | Pulse rate, body temperature,
respiration rate, movements and gesture, oxygen level | Finger | [108] |
Smart Belt (Monitoring, Detection) | Monitor movements,
ECG, body temperature, respiratory rate, heartbeat, breathing rate | Waist, Chest | [87,88] |
Smart Patches (Monitoring, Detection) | COVID-19,
pulse rate,
respiration rate, oxygen level, body temperature | Skin | [92] |
Smart Lens (Monitoring) | Vision enhancement, allergies, glaucoma | Eyes | [109] |
Smart Nutrition System (Monitoring, Detection) | Detect glucose concentration position sensor | Neck | [11,99] |
Smart Mood Monitoring System (Monitoring) | Monitor mood, pulse rate | Wrist | [100,101,102] |
Smart Rehabilitation System (Monitoring, Detection) | Exercise monitoring system | Skin | [103] |
Smart COVID-19 Detection System (Detection) | Cough monitoring, GPS monitoring | Neck | [18,19,47,104] |
Wearable Device | Possible Risks |
---|---|
Burning | Sometimes during usage these wearables cause burns on human body parts such as on skin due to the high temperature of batteries. |
Electric shock | Wearables have direct contact with the user’s body or are sometimes planted in the clothes; in such cases, a minor electric shock brings a great risk. |
Fire, Explosion | Battery explosion causes fire and high temperature that damage the skin. |
Skin damage | Some wearables cause cuts, scratches, and wounds on human body parts, such as wearable masks that caused skin damage during COVID-19. |
Reactions | Sometimes wearable cause chemical reactions, such as when chemicals in the fibers or metals that have contact with skin cause rashes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subhan, F.; Mirza, A.; Su’ud, M.B.M.; Alam, M.M.; Nisar, S.; Habib, U.; Iqbal, M.Z. AI-Enabled Wearable Medical Internet of Things in Healthcare System: A Survey. Appl. Sci. 2023, 13, 1394. https://doi.org/10.3390/app13031394
Subhan F, Mirza A, Su’ud MBM, Alam MM, Nisar S, Habib U, Iqbal MZ. AI-Enabled Wearable Medical Internet of Things in Healthcare System: A Survey. Applied Sciences. 2023; 13(3):1394. https://doi.org/10.3390/app13031394
Chicago/Turabian StyleSubhan, Fazli, Alina Mirza, Mazliham Bin Mohd Su’ud, Muhammad Mansoor Alam, Shibli Nisar, Usman Habib, and Muhammad Zubair Iqbal. 2023. "AI-Enabled Wearable Medical Internet of Things in Healthcare System: A Survey" Applied Sciences 13, no. 3: 1394. https://doi.org/10.3390/app13031394
APA StyleSubhan, F., Mirza, A., Su’ud, M. B. M., Alam, M. M., Nisar, S., Habib, U., & Iqbal, M. Z. (2023). AI-Enabled Wearable Medical Internet of Things in Healthcare System: A Survey. Applied Sciences, 13(3), 1394. https://doi.org/10.3390/app13031394