Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning
<p>Visual assessment of three tolerance classes of soybeans to off-target dicamba damage, i.e., (<b>a</b>) tolerant, (<b>b</b>) moderate, and (<b>c</b>) susceptible.</p> "> Figure 2
<p>Illustration of the DenseNet121 model architecture.</p> "> Figure 3
<p>Distribution of off-target dicamba damage scores assessed by breeders in 2020 and 2021. The horizontal axis has the visual scores that were classified into three tolerance classes, i.e., Tolerant (blue), Moderate (yellow), and Susceptible (red).</p> "> Figure 4
<p>Examples of UAV images of different soybean genotypes at three tolerance classes to off-target dicamba damage. Images were selected from genotypes in different fields in different years to illustrate the variation in plant characteristics. T: tolerant, M: moderate, S: susceptible.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment and Plant Materials
2.2. Field Evaluation of Dicamba Damage
2.3. Image Data Collection
2.4. Image Processing
2.5. Damage Assessment Using Deep Learning Model
2.6. Classification Metrics
2.7. Statistical Analysis
3. Results and Discussion
3.1. Distribution of Visual Dicamba Damage Score
3.2. Influence of Environmental Factors
3.3. Performance Evaluation of Classification Models
3.4. Model Performance Using Single-Year Dataset
3.5. Research Limitations
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valliyodan, B.; Ye, H.; Song, L.; Murphy, M.; Shannon, J.G.; Nguyen, H.T. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J. Exp. Bot. 2017, 68, 1835–1849. [Google Scholar] [CrossRef] [Green Version]
- USDA. USDA Agricultural Projections to 2032; USDA: Washington, DC, USA, 2023.
- Hansen, J.W.; Westcott, P. USDA Agricultural Projections to 2025; USDA: Washington, DC, USA, 2016.
- Kuwayama, Y.; Thompson, A.; Bernknopf, R.; Zaitchik, B.; Vail, P. Estimating the Impact of Drought on Agriculture Using the U.S. Drought Monitor. Am. J. Agric. Econ. 2019, 101, 193–210. [Google Scholar] [CrossRef]
- Ye, H.; Song, L.; Chen, H.; Valliyodan, B.; Cheng, P.; Ali, L.; Vuong, T.; Wu, C.; Orlowski, J.; Buckley, B.; et al. A major natural genetic variation associated with root system architecture and plasticity improves waterlogging tolerance and yield in soybean. Plant Cell Environ. 2018, 41, 2169–2182. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, X.; Wang, Y.; Sui, Y.; Zhang, S.; Herbert, S.; Ding, G. Soil degradation: A problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ. 2010, 56, 87–97. [Google Scholar] [CrossRef] [Green Version]
- O’Neal, M.E.; Johnson, K.D. Insect Pests of Soybean and Their Management. The Soybean: Botany, Production and Uses; CABI: Wallingford, UK, 2010; pp. 300–324. [Google Scholar] [CrossRef]
- Soltani, N.; Dille, J.A.; Burke, I.C.; Everman, W.J.; VanGessel, M.J.; Davis, V.M.; Sikkema, P.H. Perspectives on Potential Soybean Yield Losses from Weeds in North America. Weed Technol. 2017, 31, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Harker, K.N.; O’Donovan, J.T. Recent weed control, weed management, and integrated weed management. Weed Technol. 2013, 27, 1–11. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, S.; Merfield, C.N.; Jabran, K. Mechanical Weed Control, in Non-Chemical Weed Control; Elsevier: Amsterdam, The Netherlands, 2018; pp. 133–155. [Google Scholar]
- Caux, P.-Y.; Kent, R.A.; Tache, M.; Grande, C.; Fan, G.T.; MacDonald, D.D. Environmental fate and effects of dicamba: A Canadian perspective. Rev. Environ. Contam. Toxicol. Contin. Residue Rev. 1993, 133, 1–58. [Google Scholar]
- ReportLinker.com; Dicamba Herbicide Market: Segmented By Formulation; By Crop Type and Region—Global Analysis of Market Size, Share & Trends for 2019–2020 and Forecasts to 2030. 2022. Available online: https://www.reportlinker.com/p06191952/Dicamba-Herbicide-Market-Segmented-By-Formulation-By-Crop-Type-and-Region-Global-Analysis-of-Market-Size-Share-Trends-for-and-Forecasts-to.html?utm_source=GNW (accessed on 26 July 2022).
- Tindall, K.; Tindall, K.; Becker, J.; Orlowski, J.; Hawkins, C. EPA Releases Summary of Dicamba-Related Incident Reports from the 2021 Growing Season. 2021. Available online: https://www.epa.gov/pesticides/epa-releases-summary-dicamba-related-incident-reports-2021-growing-season (accessed on 19 October 2022).
- Turner, T.; Borwick, K. Dicamba Lawsuits. 2021. Available online: https://www.consumernotice.org/legal/dicamba-lawsuits/ (accessed on 6 August 2022).
- Vieira, C.C.; Chen, P. The numbers game of soybean breeding in the United States. Crop. Breed. Appl. Biotechnol. 2021, 21, e387521S1. [Google Scholar] [CrossRef]
- Vieira, C.C.; Sarkar, S.; Tian, F.; Zhou, J.; Jarquin, D.; Nguyen, H.T.; Zhou, J.; Chen, P. Differentiate Soybean Response to Off-Target Dicamba Damage Based on UAV Imagery and Machine Learning. Remote Sens. 2022, 14, 1618. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Ju, C.; Son, H.I. Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications. IEEE Access 2019, 7, 105100–105115. [Google Scholar] [CrossRef]
- Sahu, S.K.; Pandey, M.; Geete, K. Classification of soybean leaf disease from environment effect using fine tuning transfer learning. Ann. Rom. Soc. Cell Biol. 2021, 25, 2188–2201. [Google Scholar]
- da Silva, L.A.; Bressan, P.O.; Goncalves, D.N.; Freitas, D.M.; Machado, B.B.; Goncalves, W.N. Estimating soybean leaf defoliation using convolutional neural networks and synthetic images. Comput. Electron. Agric. 2019, 156, 360–368. [Google Scholar] [CrossRef]
- Moeinizade, S.; Pham, H.; Han, Y.; Dobbels, A.; Hu, G. An applied deep learning approach for estimating soybean relative maturity from UAV imagery to aid plant breeding decisions. Mach. Learn. Appl. 2022, 7, 100233. [Google Scholar] [CrossRef]
- Zhou, J.; Yungbluth, D.; Vong, C.N.; Scaboo, A.; Zhou, J. Estimation of the maturity date of soybean breeding lines using UAV-based multispectral imagery. Remote Sens. 2019, 11, 2075. [Google Scholar] [CrossRef] [Green Version]
- Feng, A.; Zhou, J.; Vories, E.; Sudduth, K.A. Evaluation of cotton emergence using UAV-based imagery and deep learning. Comput. Electron. Agric. 2020, 177, 105711. [Google Scholar] [CrossRef]
- Ahmad, A.; Saraswat, D.; Aggarwal, V.; Etienne, A.; Hancock, B. Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems. Comput. Electron. Agric. 2021, 184, 106081. [Google Scholar] [CrossRef]
- Hao, X.; Zhang, G.; Ma, S. Deep learning. Int. J. Semant. Comput. 2016, 10, 417–439. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Pavek, M.J.; Shelton, S.C.; Holden, Z.J.; Sankaran, S. Aerial multispectral imaging for crop hail damage assessment in potato. Comput. Electron. Agric. 2016, 127, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of Development Descriptions for Soybeans, Glycine Max (L.) Merrill. Crop. Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Babu, V.S.; Ram, N.V. Deep Residual CNN with Contrast Limited Adaptive Histogram Equalization for Weed Detection in Soybean Crops. Trait. Sign. 2022, 39, 717–722. [Google Scholar] [CrossRef]
- Anami, B.S.; Malvade, N.N.; Palaiah, S. Deep learning approach for recognition and classification of yield affecting paddy crop stresses using field images. Artif. Intell. Agric. 2020, 4, 12–20. [Google Scholar] [CrossRef]
- Vong, C.N.; Conway, L.S.; Feng, A.; Zhou, J.; Kitchen, N.R.; Sudduth, K.A. Corn emergence uniformity estimation and mapping using UAV imagery and deep learning. Comput. Electron. Agric. 2022, 198, 107008. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, G.; Zhang, Z. Crop Disease Recognition Based on Modified Light-Weight CNN with Attention Mechanism. IEEE Access 2022, 10, 112066–112075. [Google Scholar] [CrossRef]
- Sivakumar, R.; Vasudevan, C.V.; Sarnaam, M.K.; Sahaana, K.; Suresh, S. Deep Convolution Network Analysis for Crop Growth Prediction. In Proceedings of the 2022 IEEE 7th International conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2022. [Google Scholar]
- Sathyavani, R.; JaganMohan, K.; Kalaavathi, B. Classification of nutrient deficiencies in rice crop using denseNet-BC. Mater. Today Proc. 2022, 56, 1783–1789. [Google Scholar] [CrossRef]
- Bao, W.; Cheng, T.; Zhou, X.-G.; Guo, W.; Wang, Y.; Zhang, X.; Qiao, H.; Zhang, D. An Improved Densenet-Cnn Model to Classify the Damage Caused by Cotton Aphid. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4227548 (accessed on 12 February 2023).
- Pedregosa, F.; Varoquax, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- TensorFlow. Transfer Learning and Fine-Tuning. Available online: https://www.tensorflow.org/guide/keras/transfer_learning (accessed on 12 February 2023).
- Goutam, K.; Balasubramanian, S.; Gera, D.; Sarma, R.R. LayerOut: Freezing Layers in Deep Neural Networks. SN Comput. Sci. 2020, 1, 1–9. [Google Scholar] [CrossRef]
- Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation between Training and Testing Sets: A Pedagogical Explanation; Departmental Technical Reports (CS). 1209; 2018; Available online: https://scholarworks.utep.edu/cs_techrep/1209 (accessed on 10 October 2022).
- Vieira, C.C.; Zhou, J.; Cross, C.; Heiser, J.W.; Diers, B.; Riechers, D.E.; Zhou, J.; Jarquin, D.H.; Nguyen, H.; Shannon, J.G.; et al. Differential responses of soybean genotypes to off-target dicamba damage. Crop. Sci. 2022, 62, 1472–1483. [Google Scholar] [CrossRef]
- Arsenijevic, N.; DeWerff, R.; Conley, S.; Ruark, M.; Werle, R. Influence of integrated agronomic and weed management practices on soybean canopy development and yield. Weed Technol. 2021, 36, 73–78. [Google Scholar] [CrossRef]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Shazia, A.; Xuan, T.Z.; Chuah, J.H.; Usman, J.; Qian, P.; Lai, K.W. A comparative study of multiple neural network for detection of COVID-19 on chest X-ray. EURASIP J. Adv. Signal Process. 2021, 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- May, E. New Report: How Dicamba Herbicides Are Harming Cultivated and Wild Landscapes. 2020. Available online: https://xerces.org/blog/new-report-how-dicamba-herbicides-are-harming-cultivated-and-wild-landscapes (accessed on 12 February 2023).
- Chen, Y.; Nelson, R.L. Genetic variation and relationships among cultivated, wild, and semiwild soybean. Crop Sci. 2004, 44, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Matias, F.I.; Caraza-Harter, M.V.; Endelman, J.B. FIELDimageR: An R package to analyze orthomosaic images from agricultural field trials. Plant Phenome J. 2020, 3, e20005. [Google Scholar] [CrossRef]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zhang, H.; Lu, G.; Zhan, M.; Zhang, B. Semi-Supervised Classification of Graph Convolutional Networks with Laplacian Rank Constraints. Neural Process. Lett. 2021, 54, 2645–2656. [Google Scholar] [CrossRef]
Year | Field | Genotype Number | 4-Row Plots 1 | Planting Date | Field Assessment and Imaging Data | DAP 2 |
---|---|---|---|---|---|---|
2020 | 1 | 213 | 670 | 17 April 2020 | 20 August 2020 | 125 |
2 | 213 | 670 | 28 April 2020 | 8 September 2020 | 134 | |
3 | 213 | 672 | 18 April 2020 | 21 August 2020 | 125 | |
4 | 48 | 144 | 1 June 2020 | 15 September 2020 | 105 | |
5 | 48 | 144 | 27 May 2020 | 14 September 2020 | 110 | |
2021 | 6 | 223 | 714 | 22 April 2021 | 12 August 2021 | 112 |
7 | 223 | 717 | 17 May 2021 | 16 August 2021 | 91 |
DenseNet121 | ResNet50 | VGG16 | Xception | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S * | M * | T * | S | M | T | S | M | T | S | M | T | |
Precision | 0.66 | 0.85 | 0.73 | 0.77 | 0.84 | 0.64 | 0.56 | 0.85 | 0.58 | 0.51 | 0.84 | 0.60 |
Recall | 0.54 | 0.89 | 0.71 | 0.39 | 0.88 | 0.76 | 0.53 | 0.81 | 0.71 | 0.49 | 0.81 | 0.72 |
F1-score | 0.59 | 0.87 | 0.72 | 0.51 | 0.86 | 0.69 | 0.55 | 0.83 | 0.64 | 0.50 | 0.82 | 0.66 |
Accuracy | 0.82 | 0.80 | 0.76 | 0.75 |
Reference | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | M | T | S | M | T | S | M | T | S | M | T | ||
Predict | S | 51 | 26 | 0 | 37 | 11 | 0 | 51 | 37 | 3 | 47 | 42 | 2 |
M | 44 | 470 | 36 | 56 | 465 | 30 | 43 | 428 | 33 | 48 | 427 | 33 | |
T | 0 | 31 | 88 | 2 | 51 | 94 | 1 | 62 | 88 | 0 | 58 | 89 |
2020 | 2021 | |||||
---|---|---|---|---|---|---|
S | M | T | S | M | T | |
Precision | 0.60 | 0.88 | 0.85 | 0.54 | 0.81 | 0.84 |
Recall | 0.47 | 0.94 | 0.61 | 0.30 | 0.94 | 0.54 |
F1-score | 0.52 | 0.91 | 0.71 | 0.39 | 0.87 | 0.66 |
Accuracy | 0.85 | 0.80 |
Reference—2021 | Reference—2021 | ||||||
---|---|---|---|---|---|---|---|
S | M | T | S | M | T | ||
Predict | S | 22 | 15 | 0 | 7 | 6 | 0 |
M | 25 | 335 | 22 | 16 | 190 | 28 | |
T | 0 | 6 | 35 | 0 | 6 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, F.; Vieira, C.C.; Zhou, J.; Zhou, J.; Chen, P. Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning. Sensors 2023, 23, 3241. https://doi.org/10.3390/s23063241
Tian F, Vieira CC, Zhou J, Zhou J, Chen P. Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning. Sensors. 2023; 23(6):3241. https://doi.org/10.3390/s23063241
Chicago/Turabian StyleTian, Fengkai, Caio Canella Vieira, Jing Zhou, Jianfeng Zhou, and Pengyin Chen. 2023. "Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning" Sensors 23, no. 6: 3241. https://doi.org/10.3390/s23063241