Direct Drive Brush-Shaped Tool with Torque Sensing Capability for Compliant Robotic Vine Suckering
<p>Manual suckering process is shown on the left. Usually, while performing manual suckering, the worker also removes the excess bark from the trunk of the plant, as shown on the right.</p> "> Figure 2
<p>Mobile manipulator developed as a part of the HEKTOR project. Direct drive brush-shaped tool is mounted as a robotic manipulator end-effector.</p> "> Figure 3
<p>Exploded view of the direct drive brush-shaped tool developed for vine suckering. The tool is actuated by a torque-dense brushless DC motor.</p> "> Figure 4
<p>Raw torque signal calculated from current measurements (<math display="inline"><semantics> <msub> <mi>τ</mi> <mrow> <mi>raw</mi> </mrow> </msub> </semantics></math>), and the filtered torque signal, output from the alpha–beta filter (<math display="inline"><semantics> <msub> <mi>τ</mi> <mrow> <mi>filtered</mi> </mrow> </msub> </semantics></math>).</p> "> Figure 5
<p>The torque applied by the tool depends on its overlap with the obstacle. An experiment is conducted in order to estimate the relationship between the mentioned values.</p> "> Figure 6
<p>Experimental results suggest that the relationship between the overlap and the measured torque can be approximated with a quadratic function. Raw measurements of the torque applied by the tool <math display="inline"><semantics> <msub> <mi>τ</mi> <mrow> <mi>raw</mi> </mrow> </msub> </semantics></math> and the fitted quadratic function model <math display="inline"><semantics> <msub> <mi>τ</mi> <mrow> <mi>model</mi> </mrow> </msub> </semantics></math> are shown.</p> "> Figure 7
<p>The velocity of the robot arm end-effector is controlled to achieve compliant plant trunk shape following.</p> "> Figure 8
<p>Trunk following experiment. Compliant control in forward direction from <a href="#sec4-sensors-23-01195" class="html-sec">Section 4</a> is used, while the tool follows a sinusoidal function in the vertical direction.</p> "> Figure 9
<p>Plant trunk shape following results. The position of the robot arm end-effector in <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> plane is shown on the left, and the trunk shape is shown on the right.</p> "> Figure 10
<p>Raw torque measurements during the plant shape following experiment. Desired and measured torque is denoted as <math display="inline"><semantics> <msub> <mi>τ</mi> <mi>d</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>τ</mi> <mi>m</mi> </msub> </semantics></math>, respectively.</p> ">
Abstract
:1. Introduction
- Limiting the torque exerted on the plant,
- Using exerted torque feedback for compliant robot arm control.
1.1. Related Work
1.2. Contributions
1.3. Paper Organization
2. Direct Drive Brush-Shaped Tool Design
Torque Sensing and Signal Filtering
3. Overlap Experiment
4. Compliant Robot Arm Control
5. Trunk Shape Following Experiment
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hektor Project Website. Available online: hektor.fer.hr (accessed on 29 November 2022).
- Goričanec, J.; Kapetanović, N.; Vatavuk, I.; Hrabar, I.; Vasiljević, G.; Gledec, G.; Stuhne, D.; Bogdan, S.; Orsag, M.; Petrović, T.; et al. Heterogeneous autonomous robotic system in viticulture and mariculture-project overview. In Proceedings of the 2021 16th International Conference on Telecommunications (ConTEL), Zagreb, Croatia, 30 June–2 July 2021; pp. 181–188. [Google Scholar] [CrossRef]
- Vatavuk, I.; Vasiljević, G.; Kovačić, Z. Task Space Model Predictive Control for Vineyard Spraying with a Mobile Manipulator. Agriculture 2022, 12, 381. [Google Scholar] [CrossRef]
- Stuhne, D.; Vatavuk, I.; Hrabar, I.; Vasiljević, G.; Kovačić, Z. Automated Suckering of Vines with a Mobile Robot and a Torque-Controlled Suckering Tool. In Proceedings of the 2022 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 19–21 October 2022; pp. 349–354. [Google Scholar] [CrossRef]
- Iqbal, J.; Tsagarakis, N.G.; Caldwell, D.G. A human hand compatible optimised exoskeleton system. In Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, Xishuangbanna, China, 6–8 December 2010; IEEE: Piscataway Township, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Seok, S.; Wang, A.; Chuah, M.Y.; Otten, D.; Lang, J.; Kim, S. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3307–3312. [Google Scholar] [CrossRef]
- Monta, M.; Kondo, N.; Shibano, Y. Agricultural robot in grape production system. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Aichi, Japan, 21–27 May 1995; Volume 3, pp. 2504–2509. [Google Scholar] [CrossRef]
- Oberti, R.; Marchi, M.; Tirelli, P.; Calcante, A.; Iriti, M.; Tona, E.; Hočevar, M.; Baur, J.; Pfaff, J.; Schütz, C.; et al. Selective spraying of grapevines for disease control using a modular agricultural robot. Biosyst. Eng. 2016, 146, 203–215. [Google Scholar] [CrossRef]
- Botterill, T.; Paulin, S.; Green, R.; Williams, S.; Lin, J.; Saxton, V.; Mills, S.; Chen, X.; Corbett-Davies, S. A Robot System for Pruning Grape Vines. J. Field Robot. 2016, 34, 1100–1122. [Google Scholar] [CrossRef]
- Berenstein, R. The use of agricultural robots in crop spraying/fertilizer applications. In Robotics and Automation for Improving Agriculture; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 109–136. [Google Scholar] [CrossRef]
- Santos, L.; Santos, F.; Mendes, J.; Costa, P.; Lima, J.; Reis, R.; Shinde, P. Path Planning Aware of Robot’s Center of Mass for Steep Slope Vineyards. Robotica 2019, 38, 684–698. [Google Scholar] [CrossRef]
- de Aguiar, A.S.P.; dos Santos, F.B.N.; dos Santos, L.C.F.; de Jesus Filipe, V.M.; de Sousa, A.J.M. Vineyard trunk detection using deep learning – An experimental device benchmark. Comput. Electron. Agric. 2020, 175, 105535. [Google Scholar] [CrossRef]
- Roure, F.; Moreno, G.; Soler, M.; Faconti, D.; Serrano, D.; Astolfi, P.; Bardaro, G.; Gabrielli, A.; Bascetta, L.; Matteucci, M. GRAPE: Ground Robot for vineyArd Monitoring and ProtEction. In ROBOT 2017: Third Iberian Robotics Conference; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 249–260. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Comput. Electron. Agric. 2020, 174, 105446. [Google Scholar] [CrossRef]
- Bouloumpasi, E.; Theocharis, S.; Karampatea, A.; Pavlidis, S.; Mamalis, S.; Koundouras, S.; Merou, T.; Vrochidou, E.; Pachidis, T.; Manios, M.; et al. Exploration of Viticultural Tasks to Be Performed by an Autonomous Robot: Possibilities and Limitations. In Proceedings of the 11th International Scientific Agriculture Symposium (AGROSYM 2020), Jahorina, Bosnia and Herzegovina, 8–9 October 2020; pp. 56–61. [Google Scholar]
- Vrochidou, E.; Tziridis, K.; Nikolaou, A.; Kalampokas, T.; Papakostas, G.A.; Pachidis, T.P.; Mamalis, S.; Koundouras, S.; Kaburlasos, V.G. An Autonomous Grape-Harvester Robot: Integrated System Architecture. Electronics 2021, 10, 1056. [Google Scholar] [CrossRef]
- Dokoozlian, N. The Evolution of Mechanized Vineyard Production Systems in California. Acta Hortic. 2013, 978, 265–278. [Google Scholar] [CrossRef]
- Majeed, Y.; Karkee, M.; Zhang, Q.; Fu, L.; Whiting, M.D. Determining grapevine cordon shape for automated green shoot thinning using semantic segmentation-based deep learning networks. Comput. Electron. Agric. 2020, 171, 105308. [Google Scholar] [CrossRef]
- Majeed, Y.; Karkee, M.; Zhang, Q. Estimating the trajectories of vine cordons in full foliage canopies for automated green shoot thinning in vineyards. Comput. Electron. Agric. 2020, 176, 105671. [Google Scholar] [CrossRef]
- Majeed, Y.; Karkee, M.; Zhang, Q.; Fu, L.; Whiting, M.D. Development and performance evaluation of a machine vision system and an integrated prototype for automated green shoot thinning in vineyards. J. Field Robot. 2021, 38, 898–916. [Google Scholar] [CrossRef]
- Martelloni, L.; Raffaelli, M.; Frasconi, C.; Fontanelli, M.; Peruzzi, A.; D’Onofrio, C. Using Flaming as an Alternative Method to Vine Suckering. Agronomy 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Polic, M.; Car, M.; Petric, F.; Orsag, M. Compliant Plant Exploration for Agricultural Procedures With a Collaborative Robot. IEEE Robot. Autom. Lett. 2021, 6, 2768–2774. [Google Scholar] [CrossRef]
- Asada, H.; Kanade, T.; Takeyama, I. Control of a Direct-Drive Arm. J. Dyn. Syst. Meas. Control 1983, 105, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Ebner, M.; Wallace, R. A direct-drive hand: Design, modeling and control. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Aichi, Japan, 21–27 May 1995; IEEE: Piscataway Township, NJ, USA, 1995. [Google Scholar] [CrossRef]
- Her, M.G.; Hsu, K.S.; Lan, T.S.; Karkoub, M. Haptic Direct-Drive Robot Control Scheme in Virtual Reality. J. Intell. Robot. Syst. 2002, 35, 247–264. [Google Scholar] [CrossRef]
- Bhatia, A.; Johnson, A.; Mason, M.T. Direct Drive Hands: Force-Motion Transparency in Gripper Design. In Proceedings of the Robotics: Science and Systems, Freiburg, Germany, 22–26 June 2019. [Google Scholar] [CrossRef]
- Wensing, P.M.; Wang, A.; Seok, S.; Otten, D.; Lang, J.; Kim, S. Proprioceptive Actuator Design in the MIT Cheetah: Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots. IEEE Trans. Robot. 2017, 33, 509–522. [Google Scholar] [CrossRef]
- Seok, S.; Wang, A.; Chuah, M.Y.; Hyun, D.J.; Lee, J.; Otten, D.M.; Lang, J.H.; Kim, S. Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot. IEEE/ASME Trans. Mechatronics 2015, 20, 1117–1129. [Google Scholar] [CrossRef] [Green Version]
- Katz, B. A Low Cost Modular Actuator for Dynamic Robots. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2018. [Google Scholar]
- SaLoutos, A.; Stanger-Jones, E.; Kim, S. Fast Reflexive Grasping with a Proprioceptive Teleoperation Platform. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyoto, Japan, 23–27 October 2022; IEEE: Piscataway Township, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Ostyn, F.; Vanderborght, B.; Crevecoeur, G. Design and Control of a Quasi-Direct Drive Robotic Gripper for Collision Tolerant Picking At High Speed. IEEE Robot. Autom. Lett. 2022, 7, 7692–7699. [Google Scholar] [CrossRef]
- Odrive Website Documentation. Available online: https://docs.odriverobotics.com/v/latest/control-modes.html#torque-control (accessed on 29 November 2022).
- de Lasa, M.; Hertzmann, A. Prioritized optimization for task-space control. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; IEEE: Piscataway Township, NJ, USA, 2009. [Google Scholar] [CrossRef]
- de Lasa, M.; Mordatch, I.; Hertzmann, A. Feature-based locomotion controllers. ACM Trans. Graph. 2010, 29, 1–10. [Google Scholar] [CrossRef]
- Stellato, B.; Banjac, G.; Goulart, P.; Bemporad, A.; Boyd, S. OSQP: An operator splitting solver for quadratic programs. Math. Program. Comput. 2020, 12, 637–672. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vatavuk, I.; Stuhne, D.; Vasiljević, G.; Kovačić, Z. Direct Drive Brush-Shaped Tool with Torque Sensing Capability for Compliant Robotic Vine Suckering. Sensors 2023, 23, 1195. https://doi.org/10.3390/s23031195
Vatavuk I, Stuhne D, Vasiljević G, Kovačić Z. Direct Drive Brush-Shaped Tool with Torque Sensing Capability for Compliant Robotic Vine Suckering. Sensors. 2023; 23(3):1195. https://doi.org/10.3390/s23031195
Chicago/Turabian StyleVatavuk, Ivo, Dario Stuhne, Goran Vasiljević, and Zdenko Kovačić. 2023. "Direct Drive Brush-Shaped Tool with Torque Sensing Capability for Compliant Robotic Vine Suckering" Sensors 23, no. 3: 1195. https://doi.org/10.3390/s23031195