A New Decentralized Robust Secondary Control for Smart Islanded Microgrids
<p>(<b>a</b>) Centralized and (<b>b</b>) decentralized secondary control strategies.</p> "> Figure 2
<p>The adopted islanded MG.</p> "> Figure 3
<p>The control structure of each DG.</p> "> Figure 4
<p>P/f and Q/V droop characteristics.</p> "> Figure 5
<p>Flowchart of the GA-based optimization procedure.</p> "> Figure 6
<p>Intelligent decentralized secondary control structure.</p> "> Figure 7
<p>The GA-based convergence curve for the system under investigation.</p> "> Figure 8
<p>The GA-based optimum values of control parameters.</p> "> Figure 9
<p>The system voltage using primary control in (<b>a</b>) and with applying GA-based SCUs in (<b>b</b>).</p> "> Figure 10
<p>The system frequency response using primary control in (<b>a</b>) and with applying GA-based SCUs in (<b>b</b>).</p> "> Figure 11
<p>Updating the (<b>a</b>) voltage and (<b>b</b>) frequency parameters of the SCUs in DGs after the variations in loading conditions using ANN.</p> "> Figure 12
<p>Voltage responses of all DGs using proposed online method under the step changes in loads.</p> "> Figure 13
<p>Frequency patterns of all DGs under using proposed online method under the step changes in loads.</p> "> Figure 14
<p>Active power of all DGs under the changing of load conditions.</p> "> Figure 15
<p>Reactive power of all DGs under the changing of load conditions.</p> "> Figure 16
<p>Active power losses of MG under the changing of load conditions using high resistances for DC lines.</p> "> Figure 17
<p>Active power losses of MG under the changing of load conditions using high resistances for AC lines.</p> "> Figure 18
<p>Reactive power losses of AC transmission lines under the changing of load conditions using (<b>a</b>) high resistances for DC lines and (<b>b</b>) using high resistances for AC lines.</p> ">
Abstract
:1. Introduction
- This paper proposes an effective control process with droop, inner, and SCUs for voltage and frequency control to improve MG performance. The proposed approach adjusts voltage and frequency in the MG assembly automatically in real time.
- To handle the loading variations and improve power quality, we create a robust online fine-tuning strategy based on decentralized secondary control using ANN learning features. The parameter tuning for an SCU in an MG application can be tuned online using a combination of ANN and GA. The optimal secondary PI parameters are determined by GA and stored in the SCUs permanently. The modification of the PI controller-based GA parameters by an online ANN co-occurs at any time after the starting simulation. The proposed control mechanism’s extensibility is enhanced by the ANN controller’s ability to learn, creating an independent online controller.
- The proposed control strategy makes use of the primary control-based virtual impedance method for satisfying the power-sharing requirements.
- A long-distance LVDCT transmission system is adopted for powering VSIs since it reduces power losses and eliminates reactive power problems. Short-distance AC transmission lines are used to power three-phase MG loads.
2. Proposed MG System
3. System-Generation Resource Modeling
3.1. Solar Photovoltaic
3.2. Battery Energy Storage System
4. Tuning of PI Control Parameters
5. Decentralized Secondary Control Formulation
6. Simulation Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alhasnawi, B.N.; Jasim, B.H.; Issa, W.; Anvari-Moghaddam, A.; Blaabjerg, F. A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications. Energies 2020, 13, 3480. [Google Scholar] [CrossRef]
- Alhasnawi, B.N.; Jasim, B.H.; Esteban, M.D. A New Robust Energy Management and Control Strategy for a Hybrid Microgrid System Based on Green Energy. Sustainability 2020, 12, 5724. [Google Scholar] [CrossRef]
- Jasim, A.M.; Jasim, B.H.; Kraiem, H.; Flah, A. A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System. Sustainability 2022, 14, 10158. [Google Scholar] [CrossRef]
- Alhasnawi, B.N.; Jasim, B.H.; Sedhom, B.E. Distributed secondary consensus fault tolerant control method for voltage and frequency restoration and power sharing control in multi-agent microgrid. Electr. Power Energy Syst. 2021, 133, 107251. [Google Scholar] [CrossRef]
- Lopez-Garcia, T.B.; Coronado-Mendoza, A.; Domínguez-Navarro, J.A. Artificial neural networks in microgrids: A review. Eng. Appl. Artif. Intell. 2020, 95, 103894. [Google Scholar] [CrossRef]
- Wu, T.; Wang, J. Artificial intelligence for operation and control: The case of microgrids. Electr. J. 2021, 34, 106890. [Google Scholar] [CrossRef]
- Trivedi, R.; Khadem, S. Implementation of artificial intelligence techniques in microgrid control environment: Current progress and future scopes. Energy AI 2022, 8, 100147. [Google Scholar] [CrossRef]
- Vandoorn, T.L.; Vasquez, J.C.; De Kooning, J.; Guerrero, J.M.; Vandevelde, L. Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies. IEEE Ind. Electron. Mag. 2013, 7, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Bidram, A.; Davoudi, A. Hierarchical Structure of Microgrids Control System. IEEE Trans. Smart Grid 2012, 3, 1963–1976. [Google Scholar] [CrossRef]
- Micallef, A.; Apap, M.; Spiteri-Staines, C.; Guerrero, J.M.; Vasquez, J.C. Reactive Power Sharing and Voltage Harmonic Distortion Compensation of Droop Controlled Single Phase Islanded Microgrids. IEEE Trans. Smart Grid 2014, 5, 1149–1158. [Google Scholar] [CrossRef]
- Nejabatkhah, F.; Li, Y.W. Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Trans. Power Electron. 2014, 30, 7072–7089. [Google Scholar] [CrossRef]
- Zeng, Z.; Yang, H.; Zhao, R.; Cheng, C. Topologies and control strategies of multi-functional grid-connected inverters for power quality enhancement: A comprehensive review. Renew. Sustain. Energy Rev. 2013, 24, 223–270. [Google Scholar] [CrossRef]
- Görbe, P.; Magyar, A.; Hangos, K.M. Reduction of power losses with smart grids fueled with renewable sources and applying EV batteries. J. Clean. Prod. 2012, 34, 125–137. [Google Scholar] [CrossRef]
- Jiayi, H.; Chuanwen, J.; Rong, X. A review on distributed energy resources and MicroGrid. Renew. Sustain. Energy Rev. 2008, 12, 2472–2483. [Google Scholar] [CrossRef]
- Ström, K.J.; Hägglund, T. Advanced PID control. Instrum. Syst. Autom. Soc. 2006, 73, 76–78. [Google Scholar]
- Pogaku, N.; Prodanovic, M.; Green, T.C. Modeling, analysis and testing of autonomous operation of an inverter-based mi-crogrid. IEEE Trans. Power Electron. 2007, 22, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Katiraei, F.; Iravani, M.; Lehn, P. Small-signal dynamic model of a micro-grid including conventional and electronically in-terfaced distributed resources. IET Gener. Transm. Distrib. 2007, 1, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Hou, X.; Yang, J.; Wu, J.; Su, M.; Guerrero, J.M. Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids. IEEE Trans. Smart Grid 2016, 7, 200–215. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Young, P.M.; Jain, A.; Zimmerle, D. Robust Control for Microgrid Frequency Deviation Reduction with Attached Storage System. IEEE Trans. Smart Grid 2014, 6, 557–565. [Google Scholar] [CrossRef]
- Mallesham, G.; Mishra, S.; Jha, A. Ziegler-Nichols Based Controller Parameters Tuning for Load Frequency Control in a Microgrid. In Proceedings of the 2011 International Conference on Energy, Automation, and Signal (ICEAS), Bhubaneswar, India, 28–30 December 2011; pp. 1–8. [Google Scholar]
- Mallesham, G.; Mishra, S.; Jha, A. Maiden Application of Ziegler-Nichols Method to AGC of Distributed Generation System. In Proceedings of the Power Systems Conference and Exposition (PSCE’09), Seattle, WA, USA, 15–18 March 2009; pp. 1–7. [Google Scholar]
- Scherlozer, A.; Orsini, M.; Patole, S. Simulation and Numerical Analysis and Comparative Study of a PID Controller Based on Ziegler-Nichols and Auto Turning Method. In Proceedings of the 12th IEEE International Conference on Control and Auto-mation, Kathmandu, Nepal, 1–3 June 2016. [Google Scholar]
- Hassan, M.; Abido, M. Optimal design of microgrids in autonomous and grid-connected modes using particle swarm optimi-zation. IEEE Trans. Power Electron 2011, 26, 755–769. [Google Scholar] [CrossRef]
- de Godoy, P.T.; Poloni, P.; de Almeida, A.B.; Marujo, D. Centralized Secondary Control Assessment of Microgrids with Battery and Diesel Generator. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America), Gramado City, Brazil, 15–18 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Mishra, S. Design-Oriented Analysis of Modern Active Droop-Controlled Power Supplies. IEEE Trans. Ind. Electron. 2009, 56, 3704–3708. [Google Scholar] [CrossRef]
- Almousawi, A.Q.; Aldair, A.A. Design an Accurate Power Control Strategy of Parallel Connected Inverters in Islanded Microgrids. IOP Conf. Series: Mater. Sci. Eng. 2021, 1105, 012021. [Google Scholar] [CrossRef]
- Ali, Q.; Ammar, A. Control Strategy of Reactive Power Sharing in an Islanded Microgrids. In Proceedings of the 3rd Scientific Conference of Electrical and Electronic Engineering Researches (SCEEER), Basrah, Iraq, 15–16 June 2020. [Google Scholar] [CrossRef]
- Zhong, Q.-C.; Hornik, T. Cascaded Current–Voltage Control to Improve the Power Quality for a Grid-Connected Inverter With a Local Load. IEEE Trans. Ind. Electron. 2012, 60, 1344–1355. [Google Scholar] [CrossRef]
- Bolton, W. Instrumentation and Control Systems, 3rd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Gu, W.; Lou, G.; Tan, W.; Yuan, X. A Nonlinear State Estimator-Based Decentralized Secondary Voltage Control Scheme for Autonomous Microgrids. IEEE Trans. Power Syst. 2017, 32, 4794–4804. [Google Scholar] [CrossRef]
- Simpson-Porco, J.W.; Shafiee, Q.; Dorfler, F.; Vasquez, J.C.; Guerrero, J.M.; Bullo, F. Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging. IEEE Trans. Ind. Electron. 2015, 62, 7025–7038. [Google Scholar] [CrossRef]
- Khurram, H.; Rizwan, A.; Muhammad, H.; Waseem, A.; Abubakar, S. Reactive power sharing and voltage restoration in islanded AC microgrids. Turk. J. Electr. Eng. Comput. Sci. 2022, 30, 818–838. [Google Scholar]
- Jumani, T.A.; Mustafa, M.W.; Rasid, M.; Mirjat, N.H.; Leghari, Z.H.; Saeed, M.S. Optimal Voltage and Frequency Control of an Islanded Microgrid Using Grasshopper Optimization Algorithm. Energies 2018, 11, 3191. [Google Scholar] [CrossRef] [Green Version]
- Vemula, N.K.; Parida, S.K. Enhancement of small signal stability in inverter-dominated microgrid with optimal internal model controller. Int. Trans. Electr. Energy Syst. 2020, 30, e12471. [Google Scholar] [CrossRef]
- Salim, O.M.; Aboraya, A.; Arafa, S.I. Cascaded controller for a standalone microgrid-connected inverter based on triple-action controller and particle swarm optimisation. IET Gener. Transm. Distrib. 2020, 14, 3389–3399. [Google Scholar] [CrossRef]
- Al-Saedi, W.; Lachowicz, S.W.; Habibi, D.; Bass, O. Voltage and frequency regulation based DG unit in an autonomous mi-crogrid operation using Particle Swarm Optimization. Int. J. Electr. Power Energy Syst. 2013, 53, 742–751. [Google Scholar] [CrossRef]
- Vinayagam, A.; Abu Alqumsan, A.; Swarna, K.; Khoo, S.Y.; Stojcevski, A. Intelligent control strategy in the islanded network of a solar PV microgrid. Electr. Power Syst. Res. 2018, 155, 93–103. [Google Scholar] [CrossRef]
- Mohammadi, F.; Mohammadi-Ivatloo, B.; Gharehpetian, G.B.; Ali, M.H.; Wei, W.; Erdinc, O.; Shirkhani, M. Robust Control Strategies for Microgrids: A Review. IEEE Syst. J. 2021, 16, 2401–2412. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Badal, F.R.; Das, S.K. A comparative study of high performance robust PID controller for grid voltage control of islanded microgrid. Int. J. Dyn. Control 2017, 6, 1207–1217. [Google Scholar] [CrossRef]
- Yang, C.; Yao, W.; Fang, J.; Ai, X.; Chen, Z.; Wen, J.; He, H. Dynamic event-triggered robust secondary frequency control for islanded AC microgrid. Appl. Energy 2019, 242, 821–836. [Google Scholar] [CrossRef]
- Hu, J.; Bhowmick, P. A consensus-based robust secondary voltage and frequency control scheme for islanded microgrids. Int. J. Electr. Power Energy Syst. 2019, 116, 105575. [Google Scholar] [CrossRef]
- Cai, H.; Hu, G. Distributed robust hierarchical power sharing control of grid-connected spatially concentrated ACmicrogrid. IEEE Trans. Control Syst. Technol. 2019, 27, 1012–1022. [Google Scholar] [CrossRef]
- Mohammadi, F.; Nazri, G.-A.; Saif, M. An Improved Droop-Based Control Strategy for MT-HVDC Systems. Electronics 2020, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Aazami, R.; Heydari, O.; Tavoosi, J.; Shirkhani, M.; Mohammadzadeh, A.; Mosavi, A. Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations. Sustainability 2022, 14, 6183. [Google Scholar] [CrossRef]
- Salih, T.K.M.; Hussain, Z.; Ismail, S.Y. Impact of High Voltage Direct Current Link on Transmission Line in Kurdistan Power System. J. Eng. 2022, 28, 46–59. [Google Scholar] [CrossRef]
- Sedhom, B.E.; Hatata, A.Y.; El-Saadawi, M.M.; Abd-Raboh, E.H.E. Robust adaptive H-infinity based controllerfor islanded microgrid supplying non-linearand unbalanced loads. IET Smart Grid 2019, 2, 420–435. [Google Scholar] [CrossRef]
- Ganguly, A.; Bhadra, S.; Bhowmick, P.; Sen, S. Distributed secondary control of islanded AC microgrids considering topology switching and plug-and-play operation. IFAC-PapersOnLine 2022, 55, 442–447. [Google Scholar] [CrossRef]
- Jasim, A.M.; Jasim, B.H.; Mohseni, S.; Brent, A.C. Consensus-Based Dispatch Optimization of a Microgrid Considering Meta-Heuristic-Based Demand Response Scheduling and Network Packet Loss Characterization. Energy AI 2022, in press. [Google Scholar] [CrossRef]
- Jasim, A.; Jasim, B. Grid-Forming and Grid-Following Based Microgrid Inverters Control. Iraqi J. Electr. Electron. Eng. 2021, 18, 111–131. [Google Scholar] [CrossRef]
- Alhasnawi, B.N.N.; Jasim, B.H.; Issa, W.; Esteban, M.D. A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids. Appl. Sci. 2020, 10, 6120. [Google Scholar] [CrossRef]
- Alhasnawi, B.; Jasim, B.; Rahman, Z.-A.; Guerrero, J.; Esteban, M. A Novel Internet of Energy Based Optimal Multi-Agent Control Scheme for Microgrid including Renewable Energy Resources. Int. J. Environ. Res. Public Health 2021, 18, 8146. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Vidyarthi, N. Solving machine loading problems in a flexible manufacturing system using a genetic algorithm based heuristic approach. Int. J. Prod. Res. 2000, 38, 3357–3384. [Google Scholar] [CrossRef]
- Michael, N. Artificial Intelligence A Guide to Intelligent Systems, 2nd ed.; Addison Wesley: Boston, MA, USA, 2005. [Google Scholar]
- Mi, Y.; Guo, J.; Yu, S.; Cai, P.; Ji, L.; Wang, Y.; Yue, D.; Fu, Y.; Jin, C. A Power Sharing Strategy for Islanded DC Microgrid with Unmatched Line Impedance and Local Load. Electr. Power Syst. Res. 2021, 192, 106983. [Google Scholar] [CrossRef]
- Li, Y.W.; Kao, C.N. An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low-Voltage Multibus Microgrid. IEEE Trans. Power Electron. 2009, 24, 2977–2988. [Google Scholar]
- Mikulecký, P.; Olševicová, K.; Bureš, V.; Mls, K. Possibilities of Ambient Intelligence and Smart Environments in Educational Institutions. In Handbook of Research on Ambient Intelligence and Smart Environments: Trends and Perspectives; Chong, N.Y., Matrogiovanni, F., Eds.; IGI Group: Hershey, PA, USA, 2011; pp. 620–639. [Google Scholar] [CrossRef]
AC Line Impedance | Value (Ω) | DC Line Impedance | Value (Ω) | DC Line Length (km) | Impedance between DC Lines | Value (Ω) |
---|---|---|---|---|---|---|
RA1 + jXA1 | 0.01273 + j0.219 | Rd1 | 1 | 100 | Rd1,2 | 0.0127 |
RA2 + jXA2 | 0.0159125 + j0.2748 | Rd2 | 0.95 | 92 | Rd2,3 | 0.0317 |
RA3 + jXA3 | 0.016549 + j0.2858 | Rd3 | 0.76 | 80 | Rd3,4 | 0.0317 |
RA4 + jXA4 | 0.019095 + j0.3298 | Rd4 | 1.27 | 125 | Rd4,5 | 0.0127 |
RA5 + jXA5 | 0.014003 + j0.2419 | Rd5 | 1.14 | 115 | Rd5,1 | 0.0381 |
VSI | Parameter Name | Value |
---|---|---|
VSI 1 and VSI 2 | Frequency Droop Coefficient | 9.5 × 10−5 |
Voltage Droop Coefficient | 1.3 × 10−3 | |
Power Filter Resistance | 0.1 Ω | |
Power Filter Inductance | 1.35 mH | |
Power Filter Capacitance | 500 µf | |
VSI 3, VSI 4 and VSI 5 | Frequency Droop Coefficient | 12.5 × 10−5 |
Voltage Droop Coefficient | 1.5 × 10−3 | |
Power Filter Resistance | 0.1 Ω | |
Power Filter Inductance | 1.35 mH | |
Power Filter Capacitance | 500 µf |
Time Duration (s) | Activating Load | Load Value (W + jVAR) |
---|---|---|
0–10 s | Load 1 | 75,000 + j35,000 |
10–20 s | Load 1 + Load 2 | 100,000 + j60,000 |
20–30 s | Load 1 + Load 2 + Load 3 | 150,000 + j125,000 |
30–40 s | Load 1 + Load 2 + Load 3 + Load4 | 200,000 + j150,000 |
40–50 s | Load 1 + Load 2 + Load 3 | 150,000 + j125,000 |
50–60 s | Load 1 + Load 2 | 100,000 + j60,000 |
60–70 s | Load 1 | 75,000 + j35,000 |
Frequency Restoration | Voltage Restoration | Active Power Sharing | Reactive Power Sharing | |
---|---|---|---|---|
Droop Control (without Secondary control) | ✗ | ✗ | ✗ | ✗ |
Offline Parameters Tuning-Based Secondary Control | ✓ | ✓ > ✗ | ✓ | ✓ |
Proposed Online Parameters Tuning-Based Secondary Control | ✓ | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasim, A.M.; Jasim, B.H.; Bureš, V.; Mikulecký, P. A New Decentralized Robust Secondary Control for Smart Islanded Microgrids. Sensors 2022, 22, 8709. https://doi.org/10.3390/s22228709
Jasim AM, Jasim BH, Bureš V, Mikulecký P. A New Decentralized Robust Secondary Control for Smart Islanded Microgrids. Sensors. 2022; 22(22):8709. https://doi.org/10.3390/s22228709
Chicago/Turabian StyleJasim, Ali M., Basil H. Jasim, Vladimír Bureš, and Peter Mikulecký. 2022. "A New Decentralized Robust Secondary Control for Smart Islanded Microgrids" Sensors 22, no. 22: 8709. https://doi.org/10.3390/s22228709
APA StyleJasim, A. M., Jasim, B. H., Bureš, V., & Mikulecký, P. (2022). A New Decentralized Robust Secondary Control for Smart Islanded Microgrids. Sensors, 22(22), 8709. https://doi.org/10.3390/s22228709