Digital Twin-Based Integrated Monitoring System: Korean Application Cases
<p>Overall architecture.</p> "> Figure 2
<p>Factory design and improvement (FDI) reference activity model.</p> "> Figure 3
<p>FDI data model schema.</p> "> Figure 4
<p>System Functions: (<b>a</b>) Resource Library, (<b>b</b>) Factory Layout Design Tool, (<b>c</b>) Web-based 3D Visualization, (<b>d</b>) Design Review using VR, (<b>e</b>) Mobile Visualization, (<b>f</b>) Dashboard Screen.</p> "> Figure 4 Cont.
<p>System Functions: (<b>a</b>) Resource Library, (<b>b</b>) Factory Layout Design Tool, (<b>c</b>) Web-based 3D Visualization, (<b>d</b>) Design Review using VR, (<b>e</b>) Mobile Visualization, (<b>f</b>) Dashboard Screen.</p> "> Figure 5
<p>Application Case of the company “N”: (<b>a</b>) Die-Casting Machines, (<b>b</b>) CNC Machines, (<b>c</b>) 2D Chart Dashboard, (<b>d</b>) 3D Dashboard of Die-Casting Machines, (<b>e</b>) 3D Dashboard of CNC Machines, (<b>f</b>) Screenshot of Shop floor.</p> "> Figure 5 Cont.
<p>Application Case of the company “N”: (<b>a</b>) Die-Casting Machines, (<b>b</b>) CNC Machines, (<b>c</b>) 2D Chart Dashboard, (<b>d</b>) 3D Dashboard of Die-Casting Machines, (<b>e</b>) 3D Dashboard of CNC Machines, (<b>f</b>) Screenshot of Shop floor.</p> "> Figure 6
<p>Installed edge devices.</p> "> Figure 7
<p>Application Case of the company “K”: (<b>a</b>) Injection Molding Machines, (<b>b</b>) 3D model of Injection Molding Machines, (<b>c</b>) Integrated Dashboard of Shopfloor, (<b>d</b>) Work-through mode.</p> ">
Abstract
:1. Introduction
2. Related Research
- Engineering tasks such as factory layout change should be performed by the manufacturing company’s own personnel so that it can quickly reflect the situation of a physical factory that changes frequently in a situation where internal experts are scarce.
- Even without 3D expertise, 3D models of changing factories should be automatically or conveniently created. Three-dimensional visualization should be supported, all cloud, web, and mobile and should be lightweight so that the entire factory can be rendered. (This is because it takes a lot of costs and integration tasks to implement system functions in each cloud, web, and mobile environment.)
- Connected to the actual factory site, 3D models, KPIs, and data must be visualized in real time, and various user-friendly functions must be provided for users.
3. Digital Twin-Based Integrated Monitoring System
3.1. System Architecture
3.2. Data Model
3.3. System Functions
3.3.1. Connection and Backbone Layer
3.3.2. Application Layer
3.3.3. Visualization Layer
4. Korean Application Cases
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, H.S.; Lee, J.Y.; Choi, S.; Kim, H.; Park, J.H.; Son, J.Y.; Noh, S.D. Smart manufacturing: Past research, present findings, and future directions. Int. J. Precis. Eng. Manuf.-Green Technol. 2016, 3, 111–128. [Google Scholar] [CrossRef]
- Choi, S.; Kang, G.; Jun, C.; Lee, J.Y.; Han, S. Cyber-physical systems: A case study of development for manufacturing industry. Int. J. Comput. Appl. Technol. 2017, 55, 289–297. [Google Scholar] [CrossRef]
- Moiceanu, G.; Paraschiv, G. Digital Twin and Smart Manufacturing in Industries: A Bibliometric Analysis with a Focus on Industry 4.0. Sensors 2022, 22, 1388. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inform. 2018, 15, 2405–2415. [Google Scholar] [CrossRef]
- Choi, S.; Woo, J.; Kim, J.; Choi, W.; Kim, J.; Lee, J.Y. A Survey and Analysis of Research on Digital Twin in Korea. Korean J. Comput. Des. Eng. 2021, 26, 59–69. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Alam, K.M.; El Saddik, A. C2PS: A digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access 2017, 5, 2050–2062. [Google Scholar] [CrossRef]
- Redelinghuys, A.; Basson, A.; Kruger, K. A six-layer digital twin architecture for a manufacturing cell. In International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing; Springer: Bergamo, Italy, 2018; pp. 412–423. [Google Scholar]
- Zheng, Y.; Yang, S.; Cheng, H. An application framework of digital twin and its case study. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1141–1153. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, C.; Li, Z.; Ding, K.; Wang, C. Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing. Int. J. Prod. Res. 2020, 58, 1034–1051. [Google Scholar] [CrossRef]
- Choi, S.; Kang, G. Towards development of cyber-physical systems based on integration of heterogeneous technologies. Int. J. Comput. Appl. Technol. 2018, 58, 129–136. [Google Scholar] [CrossRef]
- Liu, C.; Vengayil, H.; Lu, Y.; Xu, X. A cyber-physical machine tools platform using OPC UA and MTConnect. J. Manuf. Syst. 2019, 51, 61–74. [Google Scholar] [CrossRef]
- Almada-Lobo, F. The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). J. Innov. Manag. 2015, 3, 16–21. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Processing 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Bottani, E.; Cammardella, A.; Murino, T.; Vespoli, S. From the Cyber-Physical System to the Digital Twin: The Process Development for Behaviour Modelling of a Cyber Guided Vehicle in M2M Logic; XXII Summer School Francesco Turco Industrial Systems Engineering: Palermo, Italy, 2017; pp. 1–7. [Google Scholar]
- Gyulai, D.; Pfeiffer, A.; Kádár, B.; Monostori, L. Simulation-based Production Planning and Execution Control for Reconfigurable Assembly Cells. Procedia CIRP 2016, 57, 445–450. [Google Scholar] [CrossRef]
- Zhang, M.; Tao, F.; Nee, A.Y. Digital Twin Enhanced Dynamic Job-Shop Scheduling. J. Manuf. Syst. 2021, 58, 146–156. [Google Scholar] [CrossRef]
- Samir, K.; Khabbazi, M.R.; Maffei, A.; Onori, M.A. Key performance indicators in cyber-physical production systems. Procedia CIRP 2018, 72, 498–502. [Google Scholar] [CrossRef]
- Zhou, F.; Lin, X.; Liu, C.; Zhao, Y.; Xu, P.; Ren, L.; Xue, T.; Ren, L. A survey of visualization for smart manufacturing. J. Vis. 2019, 22, 419–435. [Google Scholar] [CrossRef]
- Kokkas, A.; Vosniakos, G.-C. An Augmented Reality approach to factory layout design embedding operation simulation. Int. J. Interact. Des. Manuf. (IJIDeM) 2019, 13, 1061–1071. [Google Scholar] [CrossRef]
- Nee, A.Y.; Ong, S.K. Virtual and augmented reality applications in manufacturing. IFAC Proc. Vol. 2013, 46, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Fuertes, P.C.; Alzamora, F.M.; Carot, M.H.; Alonso Campos, J.C. Building and exploiting a Digital Twin for the management of drinking water distribution networks. Urban Water J. 2020, 17, 704–713. [Google Scholar] [CrossRef]
- Bonilla, C.A.; Zanfei, A.; Brentan, B.; Montalvo, I.; Izquierdo, J. A digital twin of a water distribution system by using graph convolutional networks for pump speed-based state estimation. Water 2022, 14, 514. [Google Scholar] [CrossRef]
- Ramos, H.M.; Morani, M.C.; Carravetta, A.; Fecarrotta, O.; Adeyeye, K.; López-Jiménez, P.A.; Pérez-Sánchez, M. New Challenges towards Smart Systems’ Efficiency by Digital Twin in Water Distribution Networks. Water 2022, 14, 1304. [Google Scholar] [CrossRef]
- Alves, R.G.; Souza, G.; Maia, R.F.; Tran, A.L.H.; Kamienski, C.; Soininen, J.P.; Lima, F. A digital twin for smart farming. In Proceedings of the 2019 IEEE Global Humanitarian Technology Conference (GHTC), Santa Clara, CA, USA, 17 October 2019; pp. 1–4. [Google Scholar]
- Angin, P.; Anisi, M.H.; Göksel, F.; Gürsoy, C.; Büyükgülcü, A. AgriLoRa: A digital twin framework for smart agriculture. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2020, 11, 77–96. [Google Scholar]
- Bado, M.F.; Tonelli, D.; Poli, F.; Zonta, D.; Casas, J.R. Digital Twin for Civil Engineering Systems: An Exploratory Review for Distributed Sensing Updating. Sensors 2022, 22, 3168. [Google Scholar] [CrossRef]
- Junquera, A.M.V.; González, J.G.; Balsera, J.M.V.; Montequín, V.R. A Wire Rod Rolling Mill Digital Twin for the Simulation of the Rolls Replacement Process. Proceedings 2020, 63, 13. [Google Scholar]
- Tancredi, G.P.; Vignali, G.; Bottani, E. Integration of Digital Twin, Machine-Learning and Industry 4.0 Tools for Anomaly Detection: An Application to a Food Plant. Sensors 2022, 22, 4143. [Google Scholar] [CrossRef]
- Gallala, A.; Kumar, A.A.; Hichri, B.; Plapper, P. Digital Twin for Human—Robot Interactions by Means of Industry 4.0 Enabling Technologies. Sensors 2022, 22, 4950. [Google Scholar] [CrossRef]
- Laaki, H.; Miche, Y.; Tammi, K. Prototyping a digital twin for real time remote control over mobile networks: Application of remote surgery. IEEE Access 2019, 7, 20325–20336. [Google Scholar] [CrossRef]
- Choi, S.; Jung, K.; Kulvatunyou, B.; Morris, K.C. An analysis of technologies and standards for designing smart manufacturing systems. J. Res. Natl. Inst. Stand. Technol. 2016, 121, 422. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Choi, S.; Kulvatunyou, B.; Cho, H.; Morris, K.C. A reference activity model for smart factory de-sign and improvement. Prod. Plan. Control. 2017, 28, 108–122. [Google Scholar] [CrossRef]
- Park, Y.; Woo, J.; Choi, S. A cloud-based digital twin manufacturing system based on an interoperable data schema for smart manufacturing. Int. J. Comput. Integr. Manuf. 2020, 33, 1259–1276. [Google Scholar] [CrossRef]
- Qiu, R.G.; Zhou, M. Mighty MESs; state-of-the-art and future manufacturing execution systems. IEEE Robot. Autom. Mag. 2004, 11, 19–25. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.Y. Server-Edge dualized closed-loop data analytics system for cyber-physical system application. Robot. Comput. -Integr. Manuf. 2021, 67, 102040. [Google Scholar] [CrossRef]
- Cavalieri, S.; Salafia, M.G. Asset administration shell for PLC representation based on IEC 61131–3. IEEE Access 2020, 8, 142606–142621. [Google Scholar] [CrossRef]
- Ye, X.; Jiang, J.; Lee, C.; Kim, N.; Yu, M.; Hong, S.H. Toward the Plug-and-Produce Capability for Industry 4.0: An Asset Administration Shell Approach. IEEE Ind. Electron. Mag. 2020, 14, 146–157. [Google Scholar] [CrossRef]
Element | Description |
---|---|
Product | Product type, parts that make up the product |
Machine | Sensing information, setting value (setup time, cycle time, MTTR, MTBF, etc.) |
Labor | Gender, working hours, skill, etc. |
Material Handling System | Material handling module ID (Ex: Container), quantity, cycle time, etc. |
Material Handling Module | Part ID, quantity, etc. |
Routing | Process order and distance, etc. |
Process | Standby, loading, operation, unloading, setup, information, etc. |
Layout | Building, floor, geometry information, process area information, etc. |
KPI | Respond ability, OEE, automation rare, space utilization, yield, throughput, energy consumption, CO2 emission, etc. |
Rule | Legal aisle width, number of gaps between columns, legal regulations such as door position, etc. |
SimulationModelInfo | Information related to the model by the simulation (e.g., simulation purpose, tool information etc.) |
SimulationRunInfo | Information related to the simulation performance (e.g., simulation execution time, etc.) |
UnitofMeasurement | Units used in the schema (e.g., length in m, time in sec, etc.) |
Type | Main Data | Size |
---|---|---|
Original CAD | History, Constraints, PMI, BREP, Attributes, Facets | |
Lightweight file | PMI, Precise BREP, Attributes, LODs, Bounding Box | <30% |
Proposed file | LOD, Tessellation, Attributes, Texture, Animation | <10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Woo, J.; Kim, J.; Lee, J.Y. Digital Twin-Based Integrated Monitoring System: Korean Application Cases. Sensors 2022, 22, 5450. https://doi.org/10.3390/s22145450
Choi S, Woo J, Kim J, Lee JY. Digital Twin-Based Integrated Monitoring System: Korean Application Cases. Sensors. 2022; 22(14):5450. https://doi.org/10.3390/s22145450
Chicago/Turabian StyleChoi, Sangsu, Jungyub Woo, Jun Kim, and Ju Yeon Lee. 2022. "Digital Twin-Based Integrated Monitoring System: Korean Application Cases" Sensors 22, no. 14: 5450. https://doi.org/10.3390/s22145450