Accurate Step Count with Generalized and Personalized Deep Learning on Accelerometer Data †
<p>Overall workflow to generate the AZ dataset.</p> "> Figure 2
<p>Representative raw accelerometer data from public and independent datasets. The first panel indicates data from the public Clemson dataset. The other panels illustrate AstraZeneca dataset for different devices used in the study.</p> "> Figure 3
<p>Representative ENMO signals from public and independent datasets. The first panel indicates data from the public Clemson dataset. The other panels illustrate AstraZeneca dataset for different devices used in the study.</p> "> Figure 4
<p>Workflow of training and testing step-count algorithms. (<b>a</b>) Model input was either the raw acceleration signal or the ENMO feature; (<b>b</b>) Generalized transfer learning on test data.</p> "> Figure 5
<p>Personalized transfer learning on test data.</p> "> Figure 6
<p>Cross-validation results on the public dataset using raw acceleration as the input to neural network models. The accuracy measures were taken from 70 shuffled splits of training and validation sets. The dashed blue line indicates performance achieved from a previous study [<a href="#B38-sensors-22-03989" class="html-bibr">38</a>].</p> "> Figure 7
<p>Cross-validation results on the public dataset using ENMO as the input to neural network models. The accuracy measures were taken from 70 shuffled splits of training and validation sets. The dashed blue line indicates performance achieved from a previous study [<a href="#B38-sensors-22-03989" class="html-bibr">38</a>].</p> "> Figure 8
<p>Results of testing the general models on an independent dataset using raw acceleration. Each dot correspond to one subject (blue dots indicate data in [<a href="#B38-sensors-22-03989" class="html-bibr">38</a>]).</p> "> Figure 9
<p>Results of testing the general models on an independent dataset using ENMO. Each dot correspond to one subject (blue dots indicate data in [<a href="#B38-sensors-22-03989" class="html-bibr">38</a>]).</p> "> Figure 10
<p>Results of testing the personalized models on an independent dataset using raw acceleration. Each dot corresponds to one subject (blue dots indicate data in [<a href="#B38-sensors-22-03989" class="html-bibr">38</a>]).</p> "> Figure 11
<p>Results of testing the personalized models on an independent dataset using ENMO. Each dot correspond to one subject (blue dots indicate data in [<a href="#B38-sensors-22-03989" class="html-bibr">38</a>]).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.1.1. Public Dataset
2.1.2. Independent Dataset
2.2. Data Preprocessing
2.3. Neural Network Models
2.3.1. Recurrent Neural Network with LSTM Cells
2.3.2. Convolutional Neural Networks
2.3.3. Performance Metrics
2.3.4. Model Training and Validation on Public Dataset
2.3.5. Model Testing on Independent Dataset
3. Results
3.1. Cross Validation on Public Dataset
3.2. Test of General Models on Independent Dataset
3.3. Test of Personalized Models on Independent Dataset
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tudor-Locke, C. Steps to Better Cardiovascular Health: How Many Steps Does It Take to Achieve Good Health and How Confident Are We in This Number? Curr. Cardiovasc. Risk Rep. 2010, 4, 271–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraus, W.E.; Powell, K.E.; Haskell, W.L.; Janz, K.F.; Campbell, W.W.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L. Physical Activity, All-Cause and Cardiovascular Mortality, and Cardiovascular Disease. Med. Sci. Sports Exerc. 2019, 51, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Daskalos, A.-C.; Theodoropoulos, P.; Spandonidis, C.; Vordos, N. Wearable Device for Observation of Physical Activity with the Purpose of Patient Monitoring Due to COVID-19. Signals 2022, 3, 11–28. [Google Scholar] [CrossRef]
- Althoff, T.; Sosič, R.; Hicks, J.L.; King, A.C.; Delp, S.L.; Leskovec, J. Large-scale physical activity data reveal worldwide activity inequality. Nature 2017, 547, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plotz, T.; Olivier, P.; Granat, M.H. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef] [PubMed]
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marvel, F.A.; Elshazly, M.B. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 2019, 18, 581–599. [Google Scholar] [CrossRef]
- Kraus, W.E.; Janz, K.F.; Powell, K.E.; Campbell, W.W.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L. Daily step counts for measuring physical activity exposure and its relation to health. Med. Sci. Sports Exerc. 2019, 51, 1206–1212. [Google Scholar] [CrossRef]
- Hall, K.S.; Hyde, E.T.; Bassett, D.R.; Carlson, S.A.; Carnethon, M.R.; Ekelund, U.; Fulton, J.E. Systematic review of the prospective association of daily step counts with risk of mortality, cardiovascular disease, and dysglycemia. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 78. [Google Scholar] [CrossRef]
- Hansen, B.H.; Dalene, K.E.; Ekelund, U.; Wang Fagerland, M.; Kolle, E.; Steene-Johannessen, J.; Tarp, J.; Anderssen, A.S. Step by step: Association of device-measured daily steps with all-cause mortality—A prospective cohort Study. Scand. J. Med. Sci. Sport. 2020, 30, 1705–1711. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Troiano, R.P.; Bassett, D.R.; Graubard, B.I.; Carlson, S.A.; Shiroma, E.J.; Matthews, C.E. Association of Daily Step Count and Step Intensity With Mortality Among US Adults. JAMA 2020, 323, 1151–1160. [Google Scholar] [CrossRef]
- Chaput, J.P.; Barnes, J.D.; Tremblay, M.S.; Fogelholm, M.; Hu, G.; Lambert, E.V.; Maher, C.; Maia, J.; Olds, T.; Onywera, V.; et al. Inequality in physical activity, sedentary behaviour, sleep duration and risk of obesity in children: A 12-country study. Obes. Sci. Pract. 2018, 4, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.V.; Hildebrand, J.S.; Leach, C.R.; Campbell, P.T.; Doyle, C.; Shuval, K.; Gapstur, S.M. Walking in relation to mortality in a large prospective cohort of older U.S. adults. Am. J. Prev. Med. 2018, 54, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Miyazaki, H.; Shimada, M.; Nakagawa, N.; Sawada, S.S.; Nishimuta, M.; Yoshitake, Y. Daily step count and all-cause mortality in a sample of Japanese elderly people: A cohort study. BMC Public Health 2018, 18, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I.; Shiroma, E.J.; Kamada, M.; Bassett, D.R.; Matthews, C.E.; Buring, J.E. Association of Step Volume and Intensity With All-Cause Mortality in Older Women. AMA Intern. Med. 2019, 179, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Kraus, W.E.; Yates, T.; Tuomilehto, J.; Sun, J.L.; Thomas, L.; McMurray, J.J.; Holman, R.R. Relationship between baseline physical activity assessed by pedometer count and new-onset diabetes in the NAVIGATOR trial. BMJ Open Diabetes Res. Care 2018, 6, e000523. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.R.; Newton, T.L.; Abraham, J.J.; Sen, A.; Jimbo, M.; Swartz, A.M. A meta-analysis of pedometer-based walking interventions and weight loss. Ann. Fam. Med. 2008, 6, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Harris, T.; Limb, E.S.; Hosking, F.; Carey, I.; De Wilde, S.; Furness, C.; Cook, D.G. Effect of pedometer-based walking interventions on long-term health outcomes: Prospective 4-year follow-up of two randomised controlled trials using routine primary care data. PLoS Med. 2019, 16, e1002836. [Google Scholar] [CrossRef]
- Bassett, D.R.; Toth, L.P.; LaMunion, S.R.; Crouter, S.E. Step Counting: A Review of Measurement Considerations and Health-Related Applications. Sports Med. 2017, 47, 1303–1315. [Google Scholar] [CrossRef] [Green Version]
- El-Amrawy, F.; Nounou, M.I. Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial? Healthc. Inform. Res. 2015, 21, 315–320. [Google Scholar] [CrossRef]
- Toth, L.P.; Park, S.; Springer, C.M.; Feyerabend, M.D.; Steeves, J.A.; Bassett, D.R. Video-recorded validation of wearable step counters under free-living conditions. Med. Sci. Sports Exerc. 2015, 50, 1315–1322. [Google Scholar] [CrossRef]
- Arch, E.S.; Sions, J.M.; Horne, J.; Bodt, B.A. Step count accuracy of StepWatch and FitBit One™ among individuals with a unilateral transtibial amputation. Prosthetics Orthot. Int. 2018, 42, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, A.; Hensor, E.M.; Mackie, S.L.; Backhouse, M.R.; Harris, E. Preliminary concurrent validity of the Fitbit-Zip and ActiGraph activity monitors for measuring steps in people with polymyalgia rheumatica. Gait Posture 2018, 61, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.D.; Guerra, G. Quantifying Step Count and Oxygen Consumption with Portable Technology during the 2-Min Walk Test in People with Lower Limb Amputation. Sensors 2021, 21, 2080. [Google Scholar] [CrossRef] [PubMed]
- Korpan, S.M.; Schafer, J.L.; Wilson, K.C.; Webber, S.C. Effect of ActiGraph GT3X+ position and algorithm choice on step count accuracy in older adults. J. Aging Phys. Act. 2015, 23, 377–382. [Google Scholar] [CrossRef]
- Chen, M.D.; Kuo, C.C.; Pellegrini, C.A.; Hsu, M.J. Accuracy of Wristband Activity Monitors during Ambulation and Activities. Med. Sci. Sports Exerc. 2016, 48, 1942–1949. [Google Scholar] [CrossRef]
- Feng, Y.; Wong, C.K.; Janeja, V.; Kuber, R.; Mentis, H.M. Comparison of tri-axial accelerometers step-count accuracy in slow walking condition. Gait Posture 2017, 53, 11–16. [Google Scholar] [CrossRef]
- Cho, Y.; Cho, H.; Kyung, C. Design and Implementation of Practical Step Detection Algorithm for Wrist-Worn Devices. IEEE Sensors J. 2016, 16, 7720–7730. [Google Scholar] [CrossRef]
- Huang, B.; Qi, G.; Yang, X.; Zhao, L.; Zou, H. Exploiting cyclic features of walking for pedestrian dead reckoning with unconstrained smartphones. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 374–385. [Google Scholar]
- Micó-Amigo, M.E.; Kingma, I.; Ainsworth, E.; Walgaard, S.; Niessen, M.; van Lummel, R.C.; van Dieën, J.H. A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly. Neuroeng. Rehabil 2016, 13, 38. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Huang, B.; Qi, G. A Novel Walking Detection and Step Counting Algorithm Using Unconstrained Smartphones. Sensors 2018, 18, 297. [Google Scholar] [CrossRef] [Green Version]
- Brajdic, A.; Harle, R. Walk detection and step counting on unconstrained smartphones. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 8–12 September 2013. [Google Scholar]
- Mannini, A.; Sabatini, A.M. A hidden Markov model-based technique for gait segmentation using a foot-mounted gyroscope. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 4369–4373. [Google Scholar]
- Alinia, P.; Fallahzadeh, R.; Connolly, C.P.; Ghasemzadeh, H. ParaLabel: Autonomous Parameter Learning for Cross-Domain Step Counting in Wearable Sensors. IEEE Sens. J. 2020, 20, 13867–13879. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Edel, M.; Köppe, E. An advanced method for pedestrian dead reckoning using BLSTM-RNNs. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Calgary, AB, Canada, 13–16 October 2015. [Google Scholar]
- Chen, Z. An LSTM Recurrent Network for Step Counting. arXiv 2018, arXiv:1802.03486. [Google Scholar]
- Shao, W.; Luo, H.; Zhao, F.; Wang, C.; Crivello, A.; Tunio, M.Z. DePedo: Anti periodic negative-step movement pedometer with deep convolutional neural networks. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Pillai, A.; Lea, H.; Khan, F.; Dennis, G. Personalized step counting using wearable sensors: A domain adapted LSTM network approach. arXiv 2020, arXiv:2012.08975. [Google Scholar]
- Mattfeld, R.; Jesch, E.; Hoover, A. A new dataset for evaluating pedometer performance. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017. [Google Scholar]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional sequence to sequence learning. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Van Den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kavukcuoglu, K. Wavenet: A generative model for raw audio. SSW 2016, 125, 2. [Google Scholar]
Test | Device | |||
---|---|---|---|---|
Algorithm | Actigraph | Shimmer | Apple Watch | iPhone |
CNN | 98.28% | 76.31% | 73.96% | 88.62% |
WaveNet | 91.41% | 87.61% | 80.01% | 72.87% |
LSTM | 98.23% | 8.04% | 95.65% | 96.93% |
Built-In | 79.56% | N/A | 98.2% | 98.2% |
Test | Device | |||
---|---|---|---|---|
Algorithm | Actigraph | Shimmer | Apple Watch | iPhone |
Shallow CNN | 98.46% | 96.26% | 95.4% | 96.64% |
WaveNet | 98.82% | 96.07% | 96.04% | 86.92% |
LSTM | 97.13% | 96.62% | 94.14% | 60.44% |
Built-In | 79.56% | N/A | 98.2% | 98.2% |
Test | Device | |||
---|---|---|---|---|
Algorithm | Actigraph | Shimmer | Apple Watch | iPhone |
CNN | 98.04% | 99.35% | 97.73% | 99.19% |
WaveNet | 98.43% | 98.97% | 97.17% | 99.53% |
LSTM | 81.39% | 49.79% | 99.25% | 99.72% |
Built-In | 79.56% | N/A | 98.2% | 98.2% |
Test | Device | |||
---|---|---|---|---|
Algorithm | Actigraph | Shimmer | Apple Watch | iPhone |
CNN | 99.26% | 98.92% | 97.26% | 99.3% |
WaveNet | 98.15% | 98.39% | 96.9% | 96.7% |
LSTM | 97.33% | 97.55% | 98.11% | 93.45% |
Built-In | 79.56% | N/A | 98.2% | 98.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luu, L.; Pillai, A.; Lea, H.; Buendia, R.; Khan, F.M.; Dennis, G. Accurate Step Count with Generalized and Personalized Deep Learning on Accelerometer Data. Sensors 2022, 22, 3989. https://doi.org/10.3390/s22113989
Luu L, Pillai A, Lea H, Buendia R, Khan FM, Dennis G. Accurate Step Count with Generalized and Personalized Deep Learning on Accelerometer Data. Sensors. 2022; 22(11):3989. https://doi.org/10.3390/s22113989
Chicago/Turabian StyleLuu, Long, Arvind Pillai, Halsey Lea, Ruben Buendia, Faisal M. Khan, and Glynn Dennis. 2022. "Accurate Step Count with Generalized and Personalized Deep Learning on Accelerometer Data" Sensors 22, no. 11: 3989. https://doi.org/10.3390/s22113989
APA StyleLuu, L., Pillai, A., Lea, H., Buendia, R., Khan, F. M., & Dennis, G. (2022). Accurate Step Count with Generalized and Personalized Deep Learning on Accelerometer Data. Sensors, 22(11), 3989. https://doi.org/10.3390/s22113989