All-Optical Parametric-Resonance Magnetometer Based on 4He Atomic Alignment
<p>Field geometry of the optically modulated alignment-based <math display="inline"><semantics> <msup> <mrow/> <mn>4</mn> </msup> </semantics></math>He parametric-resonance magnetometer operated in the closed-loop mode. <math display="inline"><semantics> <msub> <mi>B</mi> <mn>0</mn> </msub> </semantics></math>, quasi-static field to be measured; <math display="inline"><semantics> <msub> <mi>B</mi> <mi>f</mi> </msub> </semantics></math>, fictitious field; <math display="inline"><semantics> <msub> <mi>B</mi> <mi>c</mi> </msub> </semantics></math>, compensating field. The gray circle at the center of the coordinate system represents <math display="inline"><semantics> <msup> <mrow/> <mn>4</mn> </msup> </semantics></math>He atomic ensemble. In the open-loop mode, the <math display="inline"><semantics> <msub> <mi>B</mi> <mi>c</mi> </msub> </semantics></math> field is removed.</p> "> Figure 2
<p>Schematic diagram of the optically modulated alignment-based <math display="inline"><semantics> <msup> <mrow/> <mn>4</mn> </msup> </semantics></math>He parametric-resonance magnetometer operated in the closed-loop mode. AOM, acousto-optic modulator; PD, photodiode; BE, beam expander; PBS, polarization beam splitter; P, polarizer; <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, half-wave plate; <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>/</mo> <mn>4</mn> </mrow> </semantics></math>, quarter-wave plate; PID, proportional-integral-derivative controller; FG, function generator; LIA, lock-in amplifier; VCCS, voltage-controlled current source. In the open-loop mode, the feedback coil, VCCS, and <math display="inline"><semantics> <msub> <mi>PID</mi> <mn>3</mn> </msub> </semantics></math> are removed.</p> "> Figure 3
<p>The relationship between the mean intensity of the light-shift beam with a wavelength of 1083.195 nm and the magnitude of the light-shift fictitious field. The square symbols are the measured values, and the dashed line is the corresponding linear fit.</p> "> Figure 4
<p>Response of the demodulated signal with respect to the magnetic field <math display="inline"><semantics> <msub> <mi>B</mi> <mn>0</mn> </msub> </semantics></math>. The inset shows the response to a wider range of magnetic fields ranging from −200 nT to 200 nT.</p> "> Figure 5
<p>Spectral densities of the magnetic-field noise in open-loop (orange plot) and closed-loop (blue plot) operations of fictitious RF scheme. The sensitivities are approximately 130<math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mi>fT</mi> <mo>/</mo> <msup> <mi>Hz</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> for both modes. The closed-loop noise floor approaches that of the open-loop noise at frequencies above 40 Hz. The inset shows the signal frequency responses, demonstrating a measurement bandwidth of approximately 2 kHz.</p> "> Figure 6
<p>Spectral densities of the noise under the condition of using a magnetic RF field to induce parametric resonance. The sensitivity is approximately 70<math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mi>fT</mi> <mo>/</mo> <msup> <mi>Hz</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>. The magnetometer noise floor is close to that of magnetic-insensitive quadrature-demodulated noise. The inset shows the magnetic response of the demodulated signal in the magnetic RF scheme.</p> ">
Abstract
:1. Introduction
2. Principle and Theory
3. Experiment and Results
3.1. Experimental Setup
3.2. Fictitious Field
3.3. Response and Performance of Magnetometer
4. Further Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polonsky, N.; Cohen-Tannoudji, C. Pompage optique transversal dans un champ magnétique modulé en amplitude. Comptes Rendus Hebd. Seances L’Acad. Sci. 1965, 260, 5231–5234. [Google Scholar]
- Polonsky, N.; Cohen-Tannoudji, C. Interprétation quantique de la modulation de fréquence. J. Phys. Fr. 1965, 26, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Tannoudji, C.; Haroche, S. Absorption et diffusion de photons optiques par un atome en interaction avec des photons de radiofréquence. J. Phys. Fr. 1969, 30, 153–168. [Google Scholar] [CrossRef]
- Landré, C.; Cohen-Tannoudji, C.; Dupont-Roc, J.; Haroche, S. Anisotropie des propriétés magnétiques d’un atome « habillé » par des photons de RF. J. Phys. Fr. 1970, 31, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Tannoudji, C. Atomes “habillés” par des photons optiques ou de radiofréquence. J. Phys. Colloq. 1971, 32, C5a-11–C5a-28. [Google Scholar] [CrossRef]
- Dupont-Roc, J.; Haroche, S.; Cohen-Tannoudji, C. Detection of very weak magnetic fields (10-9 gauss) by 87Rb zero-field level crossing resonances. Phys. Lett. A 1969, 28, 638–639. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Dupont-Roc, J.; Haroche, S.; Laloë, F. Detection of the Static Magnetic Field Produced by the Oriented Nuclei of Optically Pumped 3He Gas. Phys. Rev. Lett. 1969, 22, 758–760. [Google Scholar] [CrossRef]
- Slocum, R.E. Zero-Field Level-Crossing Resonances in Optically Pumped 23S1 He4. Phys. Rev. Lett. 1972, 29, 1642–1645. [Google Scholar] [CrossRef]
- Slocum, R.E.; Marton, B.I. Measurement of weak magnetic fields using zero-field parametric resonance in optically pumped He4. IEEE Trans. Magn. 1973, 9, 221–226. [Google Scholar] [CrossRef]
- Slocum, R.E.; McGregor, D.D. Measurement of the geomagnetic field using parametric resonances in optically pumped He4. IEEE Trans. Magn. 1974, 10, 532–535. [Google Scholar] [CrossRef]
- Savukov, I.; Kim, Y.J.; Shah, V.; Boshier, M.G. High-sensitivity operation of single-beam optically pumped magnetometer in a kHz frequency range. Meas. Sci. Technol. 2017, 28, 035104. [Google Scholar] [CrossRef] [Green Version]
- Twinleaf microSERF. Available online: https://twinleaf.com/vector/microSERF/ (accessed on 4 May 2022).
- Hill, R.M.; Boto, E.; Rea, M.; Holmes, N.; Leggett, J.; Coles, L.A.; Papastavrou, M.; Everton, S.K.; Hunt, B.A.E.; Sims, D.; et al. Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. NeuroImage 2020, 219, 116995. [Google Scholar] [CrossRef] [PubMed]
- Fabricant, A.; Iwata, G.Z.; Scherzer, S.; Bougas, L.; Rolfs, K.; Jodko-Władzińska, A.; Voigt, J.; Hedrich, R.; Budker, D. Action potentials induce biomagnetic fields in carnivorous Venus flytrap plants. Sci. Rep. 2021, 11, 1438. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, J.W.; Wu, T.; Eills, J.; Hu, Y.; Budker, D. Zero- to ultralow-field nuclear magnetic resonance J-spectroscopy with commercial atomic magnetometers. J. Magn. Reson. 2020, 314, 106723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Tannoudji, C.; Dupont-Roc, J.; Haroche, S.; Laloë, F. Diverses résonances de croisement de niveaux sur des atomes pompés optiquement en champ nul. I. Théorie. Rev. Phys. Appl. 1970, 5, 95–101. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Dupont-Roc, J.; Haroche, S.; Laloë, F. Diverses résonances de croisement de niveaux sur des atomes pompés optiquement en champ nul II. Applications à la mesure de champs faibles. Rev. Phys. Appl. 1970, 5, 102–108. [Google Scholar] [CrossRef]
- Dupont-Roc, J. Détermination par des méthodes optiques des trois composantes d’un champ magnétique très faible. Rev. Phys. Appl. 1970, 5, 853–864. [Google Scholar] [CrossRef]
- Dupont-Roc, J. Étude théorique de diverses résonances observables en champ nul sur des atomes « habillés » par des photons de radiofréquence. J. Phys. Fr. 1971, 32, 135–144. [Google Scholar] [CrossRef]
- Xiao, W.; Wu, Y.; Zhang, X.; Feng, Y.; Sun, C.; Wu, T.; Chen, J.; Peng, X.; Guo, H. Single-beam three-axis optically pumped magnetometers with sub-100 femtotesla sensitivity. Appl. Phys. Express 2021, 14, 066002. [Google Scholar] [CrossRef]
- Li, Z.; Wakai, R.T.; Walker, T.G. Parametric modulation of an atomic magnetometer. Appl. Phys. Lett. 2006, 89, 134105. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Yuan, J.; Lu, G.; Li, Y.; Long, X. Three-Axis Atomic Magnetometer Employing Longitudinal Field Modulation. IEEE Photonics J. 2017, 9, 5300209. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Wang, Z.-G.; Jiang, Q.-Y.; Luo, H.; Yang, K.-Y. A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field. Chin. Phys. B 2021, 30, 050707. [Google Scholar] [CrossRef]
- Wang, J.; Fan, W.; Yin, K.; Yan, Y.; Zhou, B.; Song, X. Combined effect of pump-light intensity and modulation field on the performance of optically pumped magnetometers under zero-field parametric modulation. Phys. Rev. A 2020, 101, 053427. [Google Scholar] [CrossRef]
- Haroche, S.; Cohen-Tannoudji, C.; Audoin, C.; Schermann, J.P. Modified Zeeman Hyperfine Spectra Observed in H1 and Rb87 Ground States Interacting with a Nonresonant rf Field. Phys. Rev. Lett. 1970, 24, 861–864. [Google Scholar] [CrossRef]
- Haroche, S.; Cohen-Tannoudji, C. Resonant Transfer of Coherence in Nonzero Magnetic Field Between Atomic Levels of Different g Factors. Phys. Rev. Lett. 1970, 24, 974–978. [Google Scholar] [CrossRef]
- Yabuzaki, T.; Tsukada, N.; Ogawa, T. Modification of Atomic g-Factor by the Oscillating rf Field. J. Phys. Soc. Jpn. 1972, 32, 1069–1077. [Google Scholar] [CrossRef]
- Hao, C.-P.; Qiu, Z.-R.; Sun, Q.; Zhu, Y.; Sheng, D. Interactions between nonresonant rf fields and atoms with strong spin-exchange collisions. Phys. Rev. A 2019, 99, 053417. [Google Scholar] [CrossRef] [Green Version]
- Put, P.; Wcisło, P.; Gawlik, W.; Pustelny, S. Nonlinear magneto-optical rotation with parametric resonance. Phys. Rev. A 2019, 100, 043838. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Wang, Z.-G.; Peng, X.; Li, W.-H.; Li, S.-J.; Guo, H. Spin dynamics of magnetic resonance with parametric modulation in a potassium vapor cell. Chin. Phys. B 2017, 26, 030701. [Google Scholar] [CrossRef]
- Korver, A.; Wyllie, R.; Lancor, B.; Walker, T.G. Suppression of Spin-Exchange Relaxation Using Pulsed Parametric Resonance. Phys. Rev. Lett. 2013, 111, 043002. [Google Scholar] [CrossRef] [Green Version]
- Beato, F.; Belorizky, E.; Labyt, E.; Le Prado, M.; Palacios-Laloy, A. Theory of a 4He parametric-resonance magnetometer based on atomic alignment. Phys. Rev. A 2018, 98, 053431. [Google Scholar] [CrossRef]
- Beato, F.; Palacios-Laloy, A. Second-order effects in parametric-resonance magnetometers based on atomic alignment. EPJ Quantum Technol. 2020, 7, 9. [Google Scholar] [CrossRef]
- Fagaly, R.L. Superconducting quantum interference device instruments and applications. Rev. Sci. Instrum. 2006, 77, 101101. [Google Scholar] [CrossRef] [Green Version]
- Morales, S.; Corsi, M.C.; Fourcault, W.; Bertrand, F.; Cauffet, G.; Gobbo, C.; Alcouffe, F.; Lenouvel, F.; Le Prado, M.; Berger, F.; et al. Magnetocardiography measurements with 4He vector optically pumped magnetometers at room temperature. Phys. Med. Biol. 2017, 62, 7267–7279. [Google Scholar] [CrossRef] [Green Version]
- Labyt, E.; Corsi, M.C.; Fourcault, W.; Palacios-Laloy, A.; Bertrand, F.; Lenouvel, F.; Cauffet, G.; Le Prado, M.; Berger, F.; Morales, S. Magnetoencephalography with Optically Pumped 4He Magnetometers at Ambient Temperature. IEEE Trans. Med. Imaging 2018, 38, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, F.; Jager, T.; Boness, A.; Fourcault, W.; Le Gal, G.; Palacios-Laloy, A.; Paulet, J.; Léger, J.M. A 4He vector zero-field optically pumped magnetometer operated in the Earth-field. Rev. Sci. Instrum. 2021, 92, 105005. [Google Scholar] [CrossRef] [PubMed]
- Fourcault, W.; Romain, R.; Le Gal, G.; Bertrand, F.; Josselin, V.; Le Prado, M.; Labyt, E.; Palacios-Laloy, A. Helium-4 magnetometers for room-temperature biomedical imaging: Toward collective operation and photon-noise limited sensitivity. Opt. Express 2021, 29, 14467–14475. [Google Scholar] [CrossRef]
- Le Gal, G.; Rouve, L.-L.; Palacios-Laloy, A. Parametric resonance magnetometer based on elliptically polarized light yielding three-axis measurement with isotropic sensitivity. Appl. Phys. Lett. 2021, 118, 254001. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Dupont-Roc, J. Experimental Study of Zeeman Light Shifts in Weak Magnetic Fields. Phys. Rev. A 1972, 5, 968–984. [Google Scholar] [CrossRef]
- Patton, B.; Zhivun, E.; Hovde, D.C.; Budker, D. All-Optical Vector Atomic Magnetometer. Phys. Rev. Lett. 2014, 113, 013001. [Google Scholar] [CrossRef] [Green Version]
- Zhivun, E.; Wickenbrock, A.; Patton, B.; Budker, D. Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields. Appl. Phys. Lett. 2014, 105, 192406. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Peng, X.; Li, W.; Wang, H.; Guo, H. Magneto-optical double resonance driven by fictitious fields. Opt. Express 2017, 25, 7668–7676. [Google Scholar] [CrossRef] [PubMed]
- Lieb, G.; Jager, T.; Palacios-Laloy, A.; Gilles, H. All-optical isotropic scalar 4He magnetometer based on atomic alignment. Rev. Sci. Instrum. 2019, 90, 075104. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Martínez, R.; Knappe, S.; Kitching, J. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening. Rev. Sci. Instrum. 2014, 85, 045124. [Google Scholar] [CrossRef] [Green Version]
- Happer, W.; Mathur, B.S. Effective Operator Formalism in Optical Pumping. Phys. Rev. 1967, 163, 12–25. [Google Scholar] [CrossRef]
- Plante, M.K. A Generalized Theory of Double-Resonance Laser-Pumped Helium-4 Magnetometers. Ph.D. Thesis, The University of Texas at Dallas, Richardson, TX, USA, 2010. [Google Scholar]
- Omont, A. Irreducible components of the density matrix. Application to optical pumping. Prog. Quantum Electron. 1977, 5, 69–138. [Google Scholar] [CrossRef]
- Wang, H.; Wu, T.; Wang, H.; Peng, X.; Guo, H. Magneto-optical spectroscopy with arbitrarily polarized intensity-modulated light in 4He atoms. Phys. Rev. A 2020, 101, 063408. [Google Scholar] [CrossRef]
- Ziegler, J.G.; Nichols, N.B. Optimum Settings for Automatic Controllers. Trans. ASME 1942, 64, 759–768. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Peng, X.; Wang, H.; Xiao, W.; Guo, H. All-Optical Parametric-Resonance Magnetometer Based on 4He Atomic Alignment. Sensors 2022, 22, 4184. https://doi.org/10.3390/s22114184
Wang B, Peng X, Wang H, Xiao W, Guo H. All-Optical Parametric-Resonance Magnetometer Based on 4He Atomic Alignment. Sensors. 2022; 22(11):4184. https://doi.org/10.3390/s22114184
Chicago/Turabian StyleWang, Bowen, Xiang Peng, Haidong Wang, Wei Xiao, and Hong Guo. 2022. "All-Optical Parametric-Resonance Magnetometer Based on 4He Atomic Alignment" Sensors 22, no. 11: 4184. https://doi.org/10.3390/s22114184
APA StyleWang, B., Peng, X., Wang, H., Xiao, W., & Guo, H. (2022). All-Optical Parametric-Resonance Magnetometer Based on 4He Atomic Alignment. Sensors, 22(11), 4184. https://doi.org/10.3390/s22114184