Assessment of a Passive Lumbar Exoskeleton in Material Manual Handling Tasks under Laboratory Conditions
<p>(<b>Right</b>): Picture of test set up. Structure of the pallet of 16 boxes and participant fully instrumented with exoskeleton, EMG sensors and MoCap inertial sensors. Origin: where boxes on pallet are picked up. Destination: table where user places boxes. (<b>Left</b>): Illustration of setup scheme. Numbers represent the order boxes are picked up.</p> "> Figure 2
<p>Assessed lumbar Laevo<sup>TM</sup> V2 exoskeleton.</p> "> Figure 3
<p>Flow chart of the EMG signals processing. Filtering, segmentation, and parametrization.</p> "> Figure 4
<p>Surface EMG signals acquired simultaneously from four muscles. From top to bottom: erector spinae, gluteus medius, quadriceps femoris, semitendinosus. Time window corresponds to last 4 movements of exercise by subject 4 without exoskeleton. Vertical marks indicate beginning (green) and end (red) of myoelectrical activation, before visual check carried out to catch the boxes.</p> "> Figure 5
<p>Marginal mean curves with the standard error bars of VRMS parameter throughout the 16 boxes for all four muscles: (<b>a</b>) Erector Spinae, (<b>b</b>) Gluteus, (<b>c</b>) Quadriceps, and (<b>d</b>) Semitendinosus.</p> "> Figure 6
<p>Marginal mean curves with the standard error bars of TZC parameter throughout the 16 boxes for all four muscles: (<b>a</b>) Erector Spinae, (<b>b</b>) Gluteus, (<b>c</b>) Quadriceps, and (<b>d</b>) Semitendinosus.</p> "> Figure 7
<p>Marginal mean curves with the standard error bars of FMD parameter throughout the 16 boxes for all four muscles: (<b>a</b>) Erector Spinae, (<b>b</b>) Gluteus, (<b>c</b>) Quadriceps, and (<b>d</b>) Semitendinosus.</p> "> Figure 8
<p>Marginal mean curves with the standard error bars of FMN parameter throughout the 16 boxes for all four muscles: (<b>a</b>) Erector Spinae, (<b>b</b>) Gluteus, (<b>c</b>) Quadriceps, and (<b>d</b>) Semitendinosus.</p> "> Figure 9
<p>Marginal mean curves with the standard error bars of Log(FImin) parameter throughout the 16 boxes for all four muscles: (<b>a</b>) Erector Spinae, (<b>b</b>) Gluteus, (<b>c</b>) Quadriceps, and (<b>d</b>) Semitendinosus.</p> "> Figure A1
<p>Plot of residues, fitted values minus observed values, over the fitted values for VRMS for each muscle mixed model.</p> "> Figure A2
<p>Plot of residues, fitted values minus observed values, over the fitted values for TZC for each muscle mixed model.</p> "> Figure A3
<p>Plot of residues, fitted values minus observed values, over the fitted values for FMN for each muscle mixed model.</p> "> Figure A4
<p>Plot of residues, fitted values minus observed values, over the fitted values for FMD for each muscle mixed model.</p> "> Figure A5
<p>Plot of residues, fitted values minus observed values, over the fitted values for Log(Fimin) for each muscle mixed model.</p> ">
Abstract
:1. Introduction
2. State of the Art
2.1. Passive Exoskeletons and Common Evaluation
2.2. Reduction of Fatigue Assessment
2.3. Fatigue Assessment by Temporal and Spectral EMG Parameters
3. Materials and Methods
3.1. Measurements Protocol and Setup Design
- Duration of the task: Short, less than 1 hour of manipulation, fulfilling the recovery period of 1.2 times the work period.
- Frequency: An average frequency of 10 boxes lifted per minute was established, which means a lift every 6 s.
- Horizontal location: Position at the destination remains constant (25 cm), whereas, position at the origin varies according to the configuration of the boxes in the pallet (30 to 62 cm).
- Vertical location: As in the case of horizontal position, position at the destination remained constant (75 cm) and at the origin varied (29 to 104 cm).
- Coupling: The grip is considered to be good. The user holds the box with both hands, the grip is comfortable, the boxes have handles, and there are no improper hand/wrist postures when handling the boxes.
- Angle of asymmetry: An asymmetry angle of 45° is set when the user takes the boxes from the pallet (origin) and there is no asymmetry when the boxes are placed on the table (destination).
- First row (top), boxes 1–4.
- Second row, boxes 5–8.
- Third row, boxes 9–12.
- Fourth row (bottom), boxes 13–16.
- First: 7 kg without exoskeleton.
- Second: 8 kg without exoskeleton.
- Third: 9 kg without exoskeleton.
- Fourth: 7 kg with exoskeleton.
- Fifth: 8 kg with exoskeleton.
- Sixth: 9 kg with exoskeleton.
3.2. Equipment
3.3. Data Analysis
3.3.1. Assessment of Muscle Activation and Fatigue
- Root mean square of the segment (VRMS) (V).
- Zero-crossing rate (TZC, %), relative to the total amount of data in the segment, which provides indirect information of the signal frequency.
- Mean frequency (FMN, Hz), calculated as the average of the mean power frequency from the spectrogram (0.5 s window size):
- Median frequency (FMD, Hz) calculated as the average of the median power frequency from the spectrogram (0.5 s window size):
- Logarithm of the Dimitrov index () normalized by the minimum value of each exercise and participant, obtained from the spectral marginal of the spectrogram ():
3.3.2. Assessment of Posture
4. Results
4.1. EMG
4.1.1. Muscle Activation (VRMS)
4.1.2. Linear Fatigue Parameters: TZC, FMN and FMD
4.1.3. Non-Linear Fatigue Parameters: Log(FImin)
4.2. Motion Capture
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Residues Plots of Mixed Models
Appendix B. Extended Results of Mixed Models
Reduction % ± IC | Variable | Muscle | Box | Pr (>Chisq) |
---|---|---|---|---|
−12.37 ± 8.1 | VRMS | Lumbar | 16 | 0.0477831 |
−18.9 ± 9.5 | VRMS | Semite | 8 | 0.0018264 |
−18.53 ± 10.4 | VRMS | Semite | 16 | 0.0084854 |
6.68 ± 4.3 | TZC | Quadriceps | 15 | 0.0396045 |
−30.29 ± 18.1 | LogMin | Lumbar | 11 | 0.0183917 |
Reduction % ± IC | Variable | Muscle | Box | Pr (>Chisq) |
---|---|---|---|---|
−16.78 ± 27.6 | VRMS | Lumbar | 1 | 1 |
−17.08 ± 24 | VRMS | Lumbar | 2 | 1 |
−7.03 ± 19.5 | VRMS | Lumbar | 3 | 1 |
−11.17 ± 15 | VRMS | Lumbar | 4 | 1 |
−5.81 ± 19.8 | VRMS | Lumbar | 5 | 1 |
−0.5 ± 17.9 | VRMS | Lumbar | 6 | 1 |
−3.55 ± 14.8 | VRMS | Lumbar | 7 | 1 |
−4.04 ± 12.6 | VRMS | Lumbar | 8 | 1 |
−1.94 ± 12.6 | VRMS | Lumbar | 9 | 1 |
−0.5 ± 11.6 | VRMS | Lumbar | 10 | 1 |
−8.02 ± 10.4 | VRMS | Lumbar | 11 | 1 |
−4.75 ± 9.3 | VRMS | Lumbar | 12 | 1 |
−6.14 ± 9.8 | VRMS | Lumbar | 13 | 1 |
−10.73 ± 9 | VRMS | Lumbar | 14 | 0.3067863 |
−9.26 ± 8.8 | VRMS | Lumbar | 15 | 0.5933087 |
−12.37 ± 8.1 | VRMS | Lumbar | 16 | 0.0477831 |
−15.81 ± 15.1 | VRMS | Semite | 1 | 0.2900809 |
−16.98 ± 13.2 | VRMS | Semite | 2 | 0.1272458 |
−14.57 ± 10.6 | VRMS | Semite | 3 | 0.0996378 |
−12.95 ± 9.3 | VRMS | Semite | 4 | 0.0996378 |
−7.1 ± 12.5 | VRMS | Semite | 5 | 0.6613592 |
−9.64 ± 11.9 | VRMS | Semite | 6 | 0.5851395 |
−13.75 ± 9.9 | VRMS | Semite | 7 | 0.0996378 |
−18.9 ± 9.5 | VRMS | Semite | 8 | 0.0018264 |
−9.94 ± 11.5 | VRMS | Semite | 9 | 0.5530906 |
−8.3 ± 11.6 | VRMS | Semite | 10 | 0.6613592 |
−13.07 ± 10.8 | VRMS | Semite | 11 | 0.171118 |
−11.4 ± 10 | VRMS | Semite | 12 | 0.218151 |
−6.75 ± 11.1 | VRMS | Semite | 13 | 0.6613592 |
−7.84 ± 11.5 | VRMS | Semite | 14 | 0.6613592 |
−15.88 ± 11.6 | VRMS | Semite | 15 | 0.0996378 |
−18.53 ± 10.4 | VRMS | Semite | 16 | 0.0084854 |
−2.83 ± 51 | VRMS | Gluteus | 1 | 1 |
−0.09 ± 43.4 | VRMS | Gluteus | 2 | 1 |
−3.67 ± 34.3 | VRMS | Gluteus | 3 | 1 |
−8 ± 29.9 | VRMS | Gluteus | 4 | 1 |
−2.4 ± 36.9 | VRMS | Gluteus | 5 | 1 |
11.66 ± 32.5 | VRMS | Gluteus | 6 | 1 |
−5.58 ± 25.4 | VRMS | Gluteus | 7 | 1 |
−6.04 ± 23.7 | VRMS | Gluteus | 8 | 1 |
−9.58 ± 20.3 | VRMS | Gluteus | 9 | 1 |
−4.83 ± 18.9 | VRMS | Gluteus | 10 | 1 |
−15.07 ± 15.7 | VRMS | Gluteus | 11 | 0.8028221 |
−17.05 ± 13.4 | VRMS | Gluteus | 12 | 0.2142849 |
−14.21 ± 13.9 | VRMS | Gluteus | 13 | 0.7150969 |
−3.66 ± 14.9 | VRMS | Gluteus | 14 | 1 |
−12.13 ± 12.7 | VRMS | Gluteus | 15 | 0.8028221 |
−12.74 ± 12.9 | VRMS | Gluteus | 16 | 0.7661346 |
−3.88 ± 92.2 | VRMS | Quadriceps | 1 | 1 |
−4.48 ± 98.4 | VRMS | Quadriceps | 2 | 1 |
−5.09 ± 76.9 | VRMS | Quadriceps | 3 | 1 |
−2.31 ± 86.7 | VRMS | Quadriceps | 4 | 1 |
−16.98 ± 74.6 | VRMS | Quadriceps | 5 | 1 |
−17.76 ± 74.7 | VRMS | Quadriceps | 6 | 1 |
−16.56 ± 58.5 | VRMS | Quadriceps | 7 | 1 |
−21.93 ± 62.3 | VRMS | Quadriceps | 8 | 1 |
−31.87 ± 35.5 | VRMS | Quadriceps | 9 | 1 |
−22.1 ± 42.4 | VRMS | Quadriceps | 10 | 1 |
−10.84 ± 35.2 | VRMS | Quadriceps | 11 | 1 |
−21.76 ± 29.5 | VRMS | Quadriceps | 12 | 1 |
−11.72 ± 33.6 | VRMS | Quadriceps | 13 | 1 |
13.41 ± 37.9 | VRMS | Quadriceps | 14 | 1 |
−10.14 ± 21.4 | VRMS | Quadriceps | 15 | 1 |
−9.47 ± 24.9 | VRMS | Quadriceps | 16 | 1 |
Reduction % ± IC | Variable | Muscle | Box | Pr (>Chisq) |
---|---|---|---|---|
−1.35 ± 3.2 | TZC | Lumbar | 1 | 1 |
−1.89 ± 3.1 | TZC | Lumbar | 2 | 1 |
1.84 ± 3.2 | TZC | Lumbar | 3 | 1 |
0.53 ± 3.2 | TZC | Lumbar | 4 | 1 |
0.06 ± 3.3 | TZC | Lumbar | 5 | 1 |
−0.11 ± 3.3 | TZC | Lumbar | 6 | 1 |
−0.69 ± 3.4 | TZC | Lumbar | 7 | 1 |
0.65 ± 3.5 | TZC | Lumbar | 8 | 1 |
0.11 ± 3.8 | TZC | Lumbar | 9 | 1 |
−1.24 ± 3.6 | TZC | Lumbar | 10 | 1 |
−0.7 ± 3.8 | TZC | Lumbar | 11 | 1 |
0.07 ± 3.8 | TZC | Lumbar | 12 | 1 |
−0.67 ± 3.9 | TZC | Lumbar | 13 | 1 |
−1.85 ± 3.8 | TZC | Lumbar | 14 | 1 |
0.35 ± 4.1 | TZC | Lumbar | 15 | 1 |
−0.09 ± 4.1 | TZC | Lumbar | 16 | 1 |
0.27 ± 3.5 | TZC | Semite | 1 | 1 |
−1.96 ± 3.4 | TZC | Semite | 2 | 1 |
4.07 ± 3.5 | TZC | Semite | 3 | 0.3693992 |
0.57 ± 3.4 | TZC | Semite | 4 | 1 |
0.94 ± 3.5 | TZC | Semite | 5 | 1 |
1.05 ± 3.5 | TZC | Semite | 6 | 1 |
1.48 ± 3.5 | TZC | Semite | 7 | 1 |
0.71 ± 3.5 | TZC | Semite | 8 | 1 |
0.48 ± 3.8 | TZC | Semite | 9 | 1 |
2.99 ± 3.7 | TZC | Semite | 10 | 1 |
2.64 ± 3.8 | TZC | Semite | 11 | 1 |
2.02 ± 3.8 | TZC | Semite | 12 | 1 |
5.46 ± 4.3 | TZC | Semite | 13 | 0.2176482 |
4.63 ± 4 | TZC | Semite | 14 | 0.3693992 |
3.53 ± 4.4 | TZC | Semite | 15 | 1 |
0.64 ± 4.2 | TZC | Semite | 16 | 1 |
6.4 ± 4.7 | TZC | Gluteus | 1 | 0.1285434 |
0.15 ± 4.5 | TZC | Gluteus | 2 | 1 |
1.34 ± 4.6 | TZC | Gluteus | 3 | 1 |
1.37 ± 4.8 | TZC | Gluteus | 4 | 1 |
2.54 ± 4.9 | TZC | Gluteus | 5 | 1 |
0.63 ± 4.8 | TZC | Gluteus | 6 | 1 |
−1.23 ± 4.9 | TZC | Gluteus | 7 | 1 |
2.26 ± 5.1 | TZC | Gluteus | 8 | 1 |
−0.05 ± 5.1 | TZC | Gluteus | 9 | 1 |
−0.92 ± 5.1 | TZC | Gluteus | 10 | 1 |
0.02 ± 5.2 | TZC | Gluteus | 11 | 1 |
2.27 ± 5.4 | TZC | Gluteus | 12 | 1 |
1.64 ± 5.4 | TZC | Gluteus | 13 | 1 |
2.65 ± 5.6 | TZC | Gluteus | 14 | 1 |
−0.74 ± 5.7 | TZC | Gluteus | 15 | 1 |
−1.03 ± 5.6 | TZC | Gluteus | 16 | 1 |
−3.07 ± 3.8 | TZC | Quadriceps | 1 | 1 |
−0.15 ± 3.8 | TZC | Quadriceps | 2 | 1 |
−0.51 ± 3.8 | TZC | Quadriceps | 3 | 1 |
−3.1 ± 3.8 | TZC | Quadriceps | 4 | 1 |
−0.67 ± 3.9 | TZC | Quadriceps | 5 | 1 |
−1.25 ± 4 | TZC | Quadriceps | 6 | 1 |
−0.67 ± 4 | TZC | Quadriceps | 7 | 1 |
−1.76 ± 4 | TZC | Quadriceps | 8 | 1 |
0.27 ± 4 | TZC | Quadriceps | 9 | 1 |
2.02 ± 4.1 | TZC | Quadriceps | 10 | 1 |
0.36 ± 4 | TZC | Quadriceps | 11 | 1 |
1.14 ± 4.1 | TZC | Quadriceps | 12 | 1 |
4.41 ± 4.3 | TZC | Quadriceps | 13 | 0.7086889 |
4.17 ± 4.2 | TZC | Quadriceps | 14 | 0.8129344 |
6.68 ± 4.3 | TZC | Quadriceps | 15 | 0.0396045 |
2.02 ± 4.2 | TZC | Quadriceps | 16 | 1 |
Reduction % ± IC | Variable | Muscle | Box | Pr (>Chisq) |
---|---|---|---|---|
5.51 ± 3.7 | FMN | Lumbar | 1 | 0.0659239 |
1.19 ± 3.6 | FMN | Lumbar | 2 | 1 |
1.41 ± 3.5 | FMN | Lumbar | 3 | 1 |
−0.14 ± 3.6 | FMN | Lumbar | 4 | 1 |
0.69 ± 3.6 | FMN | Lumbar | 5 | 1 |
−3.06 ± 3.6 | FMN | Lumbar | 6 | 1 |
0.88 ± 3.7 | FMN | Lumbar | 7 | 1 |
0.6 ± 3.9 | FMN | Lumbar | 8 | 1 |
0.81 ± 4 | FMN | Lumbar | 9 | 1 |
−2.28 ± 4 | FMN | Lumbar | 10 | 1 |
1.46 ± 4.1 | FMN | Lumbar | 11 | 1 |
−0.79 ± 4.1 | FMN | Lumbar | 12 | 1 |
−1.54 ± 4.2 | FMN | Lumbar | 13 | 1 |
−2.59 ± 4.2 | FMN | Lumbar | 14 | 1 |
−1.74 ± 4.4 | FMN | Lumbar | 15 | 1 |
−0.14 ± 4.4 | FMN | Lumbar | 16 | 1 |
−2.04 ± 2.8 | FMN | Semite | 1 | 1 |
2.23 ± 2.6 | FMN | Semite | 2 | 1 |
0.31 ± 2.6 | FMN | Semite | 3 | 1 |
2.1 ± 2.7 | FMN | Semite | 4 | 1 |
0.61 ± 2.6 | FMN | Semite | 5 | 1 |
−0.04 ± 2.7 | FMN | Semite | 6 | 1 |
0.43 ± 2.7 | FMN | Semite | 7 | 1 |
1.81 ± 2.8 | FMN | Semite | 8 | 1 |
0.46 ± 2.8 | FMN | Semite | 9 | 1 |
3.49 ± 2.9 | FMN | Semite | 10 | 1 |
−0.47 ± 2.9 | FMN | Semite | 11 | 1 |
0.24 ± 2.9 | FMN | Semite | 12 | 1 |
0.97 ± 3 | FMN | Semite | 13 | 1 |
0.94 ± 3.1 | FMN | Semite | 14 | 1 |
2.13 ± 3.2 | FMN | Semite | 15 | 1 |
1.95 ± 3.2 | FMN | Semite | 16 | 1 |
0.21 ± 5.8 | FMN | Gluteus | 1 | 1 |
3.25 ± 5.3 | FMN | Gluteus | 2 | 1 |
1.86 ± 5.2 | FMN | Gluteus | 3 | 1 |
1.76 ± 5.4 | FMN | Gluteus | 4 | 1 |
4.36 ± 5.4 | FMN | Gluteus | 5 | 1 |
2 ± 5.5 | FMN | Gluteus | 6 | 1 |
1.88 ± 5.6 | FMN | Gluteus | 7 | 1 |
−1.35 ± 5.6 | FMN | Gluteus | 8 | 1 |
1.66 ± 5.8 | FMN | Gluteus | 9 | 1 |
1.08 ± 6 | FMN | Gluteus | 10 | 1 |
−1.54 ± 5.9 | FMN | Gluteus | 11 | 1 |
2.24 ± 6.2 | FMN | Gluteus | 12 | 1 |
−0.23 ± 6.3 | FMN | Gluteus | 13 | 1 |
1.87 ± 6.4 | FMN | Gluteus | 14 | 1 |
0.46 ± 6.6 | FMN | Gluteus | 15 | 1 |
2.86 ± 6.6 | FMN | Gluteus | 16 | 1 |
1.06 ± 4.7 | FMN | Quadriceps | 1 | 1 |
−2.33 ± 4.4 | FMN | Quadriceps | 2 | 1 |
−0.37 ± 4.5 | FMN | Quadriceps | 3 | 1 |
−0.43 ± 4.5 | FMN | Quadriceps | 4 | 1 |
0.37 ± 4.6 | FMN | Quadriceps | 5 | 1 |
−1.84 ± 4.7 | FMN | Quadriceps | 6 | 1 |
−0.81 ± 4.6 | FMN | Quadriceps | 7 | 1 |
−1.64 ± 4.7 | FMN | Quadriceps | 8 | 1 |
−2.9 ± 4.7 | FMN | Quadriceps | 9 | 1 |
0.77 ± 4.9 | FMN | Quadriceps | 10 | 1 |
−0.58 ± 4.7 | FMN | Quadriceps | 11 | 1 |
2.81 ± 4.9 | FMN | Quadriceps | 12 | 1 |
−1.01 ± 4.8 | FMN | Quadriceps | 13 | 1 |
5.89 ± 5.1 | FMN | Quadriceps | 14 | 0.4114385 |
2.7 ± 4.9 | FMN | Quadriceps | 15 | 1 |
3.02 ± 5 | FMN | Quadriceps | 16 | 1 |
Reduction % ± IC | Variable | Muscle | Box | Pr (>Chisq) |
---|---|---|---|---|
−6.65 ± 5.4 | FMD | Lumbar | 1 | 0.2860898 |
2.05 ± 5.2 | FMD | Lumbar | 2 | 1 |
4.01 ± 5.1 | FMD | Lumbar | 3 | 1 |
−0 ± 5.1 | FMD | Lumbar | 4 | 1 |
−0.71 ± 5.1 | FMD | Lumbar | 5 | 1 |
−5.62 ± 5.3 | FMD | Lumbar | 6 | 0.6013847 |
1.23 ± 5.5 | FMD | Lumbar | 7 | 1 |
−0.2 ± 5.7 | FMD | Lumbar | 8 | 1 |
−0 ± 5.9 | FMD | Lumbar | 9 | 1 |
−4.06 ± 5.9 | FMD | Lumbar | 10 | 1 |
2.68 ± 6.2 | FMD | Lumbar | 11 | 1 |
−1.58 ± 6.1 | FMD | Lumbar | 12 | 1 |
−2.85 ± 6.3 | FMD | Lumbar | 13 | 1 |
−2.43 ± 6.3 | FMD | Lumbar | 14 | 1 |
−2.11 ± 6.6 | FMD | Lumbar | 15 | 1 |
1.78 ± 6.7 | FMD | Lumbar | 16 | 1 |
−2.29 ± 4.2 | FMD | Semite | 1 | 1 |
2.07 ± 3.8 | FMD | Semite | 2 | 1 |
0.55 ± 3.8 | FMD | Semite | 3 | 1 |
3.17 ± 3.9 | FMD | Semite | 4 | 1 |
0.44 ± 3.9 | FMD | Semite | 5 | 1 |
−0.8 ± 3.9 | FMD | Semite | 6 | 1 |
1.07 ± 4 | FMD | Semite | 7 | 1 |
3.12 ± 4.1 | FMD | Semite | 8 | 1 |
−0.05 ± 4.2 | FMD | Semite | 9 | 1 |
4.18 ± 4.4 | FMD | Semite | 10 | 1 |
−1.37 ± 4.4 | FMD | Semite | 11 | 1 |
−0.34 ± 4.5 | FMD | Semite | 12 | 1 |
2 ± 4.8 | FMD | Semite | 13 | 1 |
1.14 ± 4.8 | FMD | Semite | 14 | 1 |
3.1 ± 5.2 | FMD | Semite | 15 | 1 |
2.75 ± 5.1 | FMD | Semite | 16 | 1 |
0.04 ± 8.9 | FMD | Gluteus | 1 | 1 |
5.63 ± 8.3 | FMD | Gluteus | 2 | 1 |
2.21 ± 7.9 | FMD | Gluteus | 3 | 1 |
1.51 ± 8.2 | FMD | Gluteus | 4 | 1 |
5.28 ± 8.2 | FMD | Gluteus | 5 | 1 |
3.9 ± 8.5 | FMD | Gluteus | 6 | 1 |
1.02 ± 8.5 | FMD | Gluteus | 7 | 1 |
−4.79 ± 8.4 | FMD | Gluteus | 8 | 1 |
1.1 ± 9.2 | FMD | Gluteus | 9 | 1 |
1.82 ± 9.5 | FMD | Gluteus | 10 | 1 |
−3.2 ± 9.2 | FMD | Gluteus | 11 | 1 |
−0.25 ± 9.7 | FMD | Gluteus | 12 | 1 |
−1.6 ± 9.9 | FMD | Gluteus | 13 | 1 |
1.7 ± 10.2 | FMD | Gluteus | 14 | 1 |
0.12 ± 10.6 | FMD | Gluteus | 15 | 1 |
3.14 ± 10.5 | FMD | Gluteus | 16 | 1 |
0.69 ± 6.8 | FMD | Quadriceps | 1 | 1 |
−1.92 ± 6.3 | FMD | Quadriceps | 2 | 1 |
0.84 ± 6.3 | FMD | Quadriceps | 3 | 1 |
−1.05 ± 6.3 | FMD | Quadriceps | 4 | 1 |
1.96 ± 6.5 | FMD | Quadriceps | 5 | 1 |
−2.91 ± 6.7 | FMD | Quadriceps | 6 | 1 |
−0.48 ± 6.6 | FMD | Quadriceps | 7 | 1 |
−2.99 ± 6.6 | FMD | Quadriceps | 8 | 1 |
−3.54 ± 6.7 | FMD | Quadriceps | 9 | 1 |
1.51 ± 6.9 | FMD | Quadriceps | 10 | 1 |
−2.02 ± 6.7 | FMD | Quadriceps | 11 | 1 |
2.83 ± 7.1 | FMD | Quadriceps | 12 | 1 |
−1.75 ± 7 | FMD | Quadriceps | 13 | 1 |
7.86 ± 7.5 | FMD | Quadriceps | 14 | 0.6553656 |
3.4 ± 7.1 | FMD | Quadriceps | 15 | 1 |
5 ± 7.3 | FMD | Quadriceps | 16 | 1 |
Reduction % ± IC | Variable | Muscle | Box | Pr (>Chisq) |
---|---|---|---|---|
27.76 ± 24.7 | LogMin | Lumbar | 1 | 0.4344388 |
−21.9 ± 51 | LogMin | Lumbar | 2 | 1 |
−38.47 ± 60.5 | LogMin | Lumbar | 3 | 1 |
−2.78 ± 57.2 | LogMin | Lumbar | 4 | 1 |
−29.4 ± 54.3 | LogMin | Lumbar | 5 | 1 |
8.86 ± 43.1 | LogMin | Lumbar | 6 | 1 |
−20.28 ± 32.1 | LogMin | Lumbar | 7 | 1 |
−17.14 ± 23.4 | LogMin | Lumbar | 8 | 1 |
−13.97 ± 22.4 | LogMin | Lumbar | 9 | 1 |
−6.55 ± 22.4 | LogMin | Lumbar | 10 | 1 |
−30.29 ± 18.1 | LogMin | Lumbar | 11 | 0.0183917 |
1.75 ± 19.8 | LogMin | Lumbar | 12 | 1 |
3.12 ± 20.1 | LogMin | Lumbar | 13 | 1 |
−3.4 ± 19.7 | LogMin | Lumbar | 14 | 1 |
−3.74 ± 16.8 | LogMin | Lumbar | 15 | 1 |
−13.98 ± 14.4 | LogMin | Lumbar | 16 | 0.8386054 |
−13.97 ± 20.6 | LogMin | Semite | 1 | 1 |
−35.14 ± 109.5 | LogMin | Semite | 2 | 1 |
−5.24 ± 76 | LogMin | Semite | 3 | 1 |
−13.1 ± 61.2 | LogMin | Semite | 4 | 1 |
−18.01 ± 62 | LogMin | Semite | 5 | 1 |
−4.78 ± 76.3 | LogMin | Semite | 6 | 1 |
−6.43 ± 45.8 | LogMin | Semite | 7 | 1 |
−17.51 ± 37 | LogMin | Semite | 8 | 1 |
−5.65 ± 37.2 | LogMin | Semite | 9 | 1 |
−17.19 ± 28.8 | LogMin | Semite | 10 | 1 |
−0.68 ± 28.9 | LogMin | Semite | 11 | 1 |
−0.44 ± 26.6 | LogMin | Semite | 12 | 1 |
−5.09 ± 25 | LogMin | Semite | 13 | 1 |
3.38 ± 20.6 | LogMin | Semite | 14 | 1 |
−16.15 ± 19.1 | LogMin | Semite | 15 | 1 |
−8.06 ± 15.5 | LogMin | Semite | 16 | 1 |
37.53 ± 35 | LogMin | Gluteus | 1 | 0.5888774 |
−47.3 ± 45.2 | LogMin | Gluteus | 2 | 0.6201764 |
−42.75 ± 49.4 | LogMin | Gluteus | 3 | 1 |
−14.3 ± 51.6 | LogMin | Gluteus | 4 | 1 |
−48.02 ± 51.8 | LogMin | Gluteus | 5 | 0.9891507 |
−18.68 ± 50.1 | LogMin | Gluteus | 6 | 1 |
−21.11 ± 41.7 | LogMin | Gluteus | 7 | 1 |
7.14 ± 41.9 | LogMin | Gluteus | 8 | 1 |
−30.33 ± 32.7 | LogMin | Gluteus | 9 | 0.9891507 |
−20.06 ± 32.6 | LogMin | Gluteus | 10 | 1 |
−2.56 ± 31.9 | LogMin | Gluteus | 11 | 1 |
−13.08 ± 28 | LogMin | Gluteus | 12 | 1 |
−6.99 ± 25.9 | LogMin | Gluteus | 13 | 1 |
−8.33 ± 26.6 | LogMin | Gluteus | 14 | 1 |
−14.71 ± 21.8 | LogMin | Gluteus | 15 | 1 |
−8 ± 21.9 | LogMin | Gluteus | 16 | 1 |
−37.72 ± 28 | LogMin | Quadriceps | 1 | 0.1413377 |
22.49 ± 82 | LogMin | Quadriceps | 2 | 1 |
34.16 ± 88.9 | LogMin | Quadriceps | 3 | 1 |
24.96 ± 86.9 | LogMin | Quadriceps | 4 | 1 |
−27.45 ± 46.6 | LogMin | Quadriceps | 5 | 1 |
98.34 ± 82.9 | LogMin | Quadriceps | 6 | 0.3125829 |
28.13 ± 67.8 | LogMin | Quadriceps | 7 | 1 |
32.27 ± 56.9 | LogMin | Quadriceps | 8 | 1 |
46.68 ± 59.3 | LogMin | Quadriceps | 9 | 1 |
−5.35 ± 41 | LogMin | Quadriceps | 10 | 1 |
10.44 ± 55 | LogMin | Quadriceps | 11 | 1 |
−16.12 ± 38.4 | LogMin | Quadriceps | 12 | 1 |
31.98 ± 57.5 | LogMin | Quadriceps | 13 | 1 |
−26.43 ± 35.5 | LogMin | Quadriceps | 14 | 1 |
14.4 ± 52 | LogMin | Quadriceps | 15 | 1 |
−0.85 ± 38.8 | LogMin | Quadriceps | 16 | 1 |
References
- Bureau of Labour Statistics. Nonfatal Occupational Injuries and Illnesses Requiring Days Away from Work. 2016. Available online: https://www.bls.gov/news.release/osh2.toc.htm (accessed on 23 May 2022).
- Colim, A.; Faria, C.; Braga, A.C.; Sousa, N.; Rocha, L.; Carneiro, P.; Costa, N.; Arezes, P. Towards an Ergonomic Assessment Framework for Industrial Assembly Workstations—A Case Study. Appl. Sci. 2020, 10, 3048. [Google Scholar] [CrossRef]
- Rossi, D.; Bertoloni, E.; Fenaroli, M.; Marciano, F.; Alberti, M. A multi-criteria ergonomic and performance methodology for evaluating alternatives in “manuable” material handling. Int. J. Ind. Ergon. 2013, 43, 314–327. [Google Scholar] [CrossRef]
- Dempsey, P.G. Usability of the revised NIOSH lifting equation. Appl. Ergon. 2002, 45, 817–828. [Google Scholar] [CrossRef]
- Troup, J.D.G. Relation of Lumbar Spine Disorders to Heavy Manual Work and Lifting. Lancet 1965, 1, 857–861. [Google Scholar] [CrossRef]
- Basahel, A.M. Investigation of Work-related Musculoskeletal Disorders (MSDs) in Warehouse Workers in Saudi Arabia. Procedia Manuf. 2015, 3, 4643–4649. [Google Scholar] [CrossRef] [Green Version]
- Trinkoff, A.M.; Lipscomb, J.A.; Geiger-Brown, J.; Storr, C.L.; Brady, B.A. Perceived physical demands and reported musculoskeletal problems in registered nurses. Am. J. Prev. Med. 2003, 24, 270–275. [Google Scholar] [CrossRef]
- Sesenes, R.L.; Contreras-Valenzuela, M.R.; Duque-Álvarez, A.E.; Guzmán-Clemente, A.D.; León-Hernández, V.A.; Cuenca-Jiménez, F. How Poor Workstation Design Causes Musculoskeletal Disorders: Research from QOC Matrix the Workers’ Voice. In Work-Related Musculoskeletal Disorders; Korhan, O., Ed.; IntechOpen: Rijeka, Croatia, 2019; Chapter 3. [Google Scholar] [CrossRef] [Green Version]
- McGill, S. Low Back Disorders: Evidence-Based Prevention and Rehabilitation; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Hlávková, J.; Lebeda, T.; Tichý, T.; Gad’ourek, P.; Urban, P.; Nakládalová, M.; Laštovková, A.; Fenclová, Z.; Ridzoň, P.; Ehler, E.; et al. Evaluation of Lumbar Spine Load by Computational Method in Order to Acknowledge Low-back Disorders as Occupational Diseases. Cent. Eur. J. Public Health 2016, 24, 58–67. [Google Scholar] [CrossRef]
- St-Vincent, M.; Denis, D.; Imbeau, D.; Laberge, M. Work factors affecting manual materials handling in a warehouse superstore. Int. J. Ind. Ergon. 2005, 35, 33–46. [Google Scholar] [CrossRef]
- Kim, S.; Moore, A.; Srinivasan, D.; Akanmu, A.; Barr, A.; Harris-Adamson, C.; Rempel, D.M.; Nussbaum, M.A. Potential of Exoskeleton Technologies to Enhance Safety, Health, and Performance in Construction: Industry Perspectives and Future Research Directions. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 185–191. [Google Scholar] [CrossRef]
- Voilqué, A.; Masood, J.; Fauroux, J.; Sabourin, L.; Guezet, O. Industrial Exoskeleton Technology: Classification, Structural Analysis, and Structural Complexity Indicator. In Proceedings of the 2019 Wearable Robotics Association Conference (WearRAcon), Scottsdale, AZ, USA, 25–27 March 2019; pp. 13–20. [Google Scholar] [CrossRef]
- Bogue, R. Exoskeletons—A review of industrial applications. Ind. Robot Int. J. 2018, 45, 585–590. [Google Scholar] [CrossRef]
- Anam, K.; Al-Jumaily, A.A. Active Exoskeleton Control Systems: State of the Art. Procedia Eng. 2012, 41, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Fontanari, V.; Schmoelz, W.; Agrawal, S.K. Systematic Review of Back-Support Exoskeletons and Soft Robotic Suits. Front. Bioeng. Biotechnol. 2021, 9, 765257. [Google Scholar] [CrossRef] [PubMed]
- Hensel, R.; Keil, M. Subjective Evaluation of a Passive Industrial Exoskeleton for Lower-back Support: A Field Study in the Automotive Sector. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 213–221. [Google Scholar] [CrossRef]
- Iranzo, S.; Piedrabuena, A.; Iordanov, D.; Martinez-Iranzo, U.; Belda-Lois, J.M. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant. Appl. Ergon. 2020, 87, 103120. [Google Scholar] [CrossRef]
- Amandels, S.; Eyndt, H.O.h.; Daenen, L.; Hermans, V. Introduction and Testing of a Passive Exoskeleton in an Industrial Working Environment. In Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018), Florence, Italy, 26–30 August 2018; Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 387–392. [Google Scholar]
- Flor, R.; Gaspar, J.; Fujao, C. How Workers Perceive LAEVO Exoskeleton Use in Non-cyclic Tasks. In Proceedings of the Advances in Human Factors and System Interactions, New York, NY, USA, 25–29 July 2021; Nunes, I.L., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 147–154. [Google Scholar]
- Liu, Y.; Li, X.; Lai, J.; Zhu, A.; Zhang, X.; Zheng, Z.; Zhu, H.; Shi, Y.; Wang, L.; Chen, Z. The Effects of a Passive Exoskeleton on Human Thermal Responses in Temperate and Cold Environments. Int. J. Environ. Res. Public Health 2021, 18, 3889. [Google Scholar] [CrossRef]
- Koopman, A.S.; Kingma, I.; Faber, G.S.; de Looze, M.P.; van Dieën, J.H. Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks. J. Biomech. 2019, 83, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Settembre, N.; Maurice, P.; Paysant, J.; Theurel, J.; Claudon, L.; Kimmoun, A.; Levy, B.; Hani, H.; Chenuel, B.; Ivaldi, S. The use of exoskeletons to help with prone positioning in the intensive care unit during COVID-19. Ann. Phys. Rehabil. Med. 2020, 63, 379–382. [Google Scholar] [CrossRef]
- Erezuma, U.L.; Espin, A.; Torres-Unda, J.; Esain, I.; Irazusta, J.; Rodriguez-Larrad, A. Use of a Passive Lumbar Back Exoskeleton During a Repetitive Lifting Task: Effects in Physiologic Parameters and Intersubject Variability. Int. J. Occup. Saf. Ergon. 2021, 28, 1–30. [Google Scholar] [CrossRef]
- Theurel, J.; Desbrosses, K. Occupational Exoskeletons: Overview of Their Benefits and Limitations in Preventing Work-Related Musculoskeletal Disorders. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 264–280. [Google Scholar] [CrossRef]
- Pesenti, M.; Antonietti, A.; Gandolla, M.; Pedrocchi, A. Towards a Functional Performance Validation Standard for Industrial Low-Back Exoskeletons: State of the Art Review. Sensors 2021, 21, 808. [Google Scholar] [CrossRef]
- Antwi-Afari, M.F.; Li, H.; Anwer, S.; Li, D.; Yu, Y.; Mi, H.Y.; Wuni, I.Y. Assessment of a passive exoskeleton system on spinal biomechanics and subjective responses during manual repetitive handling tasks among construction workers. Safety Sci. 2021, 142, 105382. [Google Scholar] [CrossRef]
- Di Natali, C.; Chini, G.; Toxiri, S.; Monica, L.; Anastasi, S.; Draicchio, F.; Caldwell, D.G.; Ortiz, J. Equivalent Weight: Connecting Exoskeleton Effectiveness with Ergonomic Risk during Manual Material Handling. Int. J. Environ. Res. Public Health 2021, 18, 2677. [Google Scholar] [CrossRef] [PubMed]
- Waters, T.R.; Putz-Anderson, V.; Garg, A.; Fine, L.J. Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 1993, 36, 749–776. [Google Scholar] [CrossRef] [PubMed]
- ISO13586; Ergonomics—Manual Handling—Part 1: Lifting and Carrying. International Organization for Standardization: Geneva, Switzerland, 2003.
- Baltrusch, S.J.; van Dieën, J.H.; Koopman, A.S.; Näf, M.B.; Rodriguez-Guerrero, C.; Babič, J.; Houdijk, H. SPEXOR passive spinal exoskeleton decreases metabolic cost during symmetric repetitive lifting. Eur. J. Appl. Physiol. 2020, 120, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.A.; Alemi, M.M.; Asbeck, A.T. Kinematic effects of a passive lift assistive exoskeleton. J. Biomech. 2021, 120, 110317. [Google Scholar] [CrossRef]
- Picchiotti, M.T.; Weston, E.B.; Knapik, G.G.; Dufour, J.S.; Marras, W.S. Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine. Appl. Ergon. 2019, 75, 1–7. [Google Scholar] [CrossRef]
- Luger, T.; Seibt, R.; Cobb, T.J.; Rieger, M.A.; Steinhilber, B. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort. Appl. Ergon. 2019, 80, 152–160. [Google Scholar] [CrossRef]
- Bosch, T.; van Eck, J.; Knitel, K.; de Looze, M. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Appl. Ergon. 2016, 54, 212–217. [Google Scholar] [CrossRef]
- Dimitrov, G.V.; Arabadzhiev, T.I.; Mileva, K.N.; Bowtell, J.L.; Crichton, N.; Dimitrova, N.A. Muscle fatigue during dynamic contractions assessed by new spectral indices. Med. Sci. Sports Exerc. 2006, 38, 1971–1979. [Google Scholar] [CrossRef]
- Kallenberg, L.A.C.; Schulte, E.; Disselhorst-Klug, C.; Hermens, H.J. Myoelectric manifestations of fatigue at low contraction levels in subjects with and without chronic pain. J. Electromyogr. Kinesiol. 2007, 17, 264–274. [Google Scholar] [CrossRef]
- Karlsson, J.S.; Ostlund, N.; Larsson, B.; Gerdle, B. An estimation of the influence of force decrease on the mean power spectral frequency shift of the EMG during repetitive maximum dynamic knee extensions. J. Electromyogr. Kinesiol. 2003, 13, 461–468. [Google Scholar] [CrossRef]
- Poon, N.; van Engelhoven, L.; Kazerooni, H.; Harris, C. Evaluation of a Trunk Supporting Exoskeleton for reducing Muscle Fatigue. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2019, 63, 980–983. [Google Scholar] [CrossRef]
- Lotz, C.A.; Agnew, M.J.; Godwin, A.A.; Stevenson, J.M. The effect of an on-body personal lift assist device (PLAD) on fatigue during a repetitive lifting task. J. Electromyogr. Kinesiol. 2009, 19, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Godwin, A.A.; Stevenson, J.M.; Agnew, M.J.; Twiddy, A.L.; Abdoli-Eramaki, M.; Lotz, C.A. Testing the efficacy of an ergonomic lifting aid at diminishing muscular fatigue in women over a prolonged period of lifting. Int. J. Ind. Ergon. 2009, 39, 121–126. [Google Scholar] [CrossRef]
- Dewi, N.S.; Komatsuzaki, M. On-body personal assist suit for commercial farming: Effect on heart rate, EMG, trunk movements, and user acceptance during digging. Int. J. Ind. Ergon. 2018, 68, 290–296. [Google Scholar] [CrossRef]
- González-Izal, M.; Malanda, A.; Navarro-Amézqueta, I.; Gorostiaga, E.M.; Mallor, F.; Ibañez, J.; Izquierdo, M. EMG spectral indices and muscle power fatigue during dynamic contractions. J. Electromyogr. Kinesiol. 2010, 20, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, N.A.; Dimitrov, G.V. Amplitude-related characteristics of motor unit and M-wave potentials during fatigue. A simulation study using literature data on intracellular potential changes found in vitro. J. Electromyogr. Kinesiol. 2002, 12, 339–349. [Google Scholar] [CrossRef]
- Al-mulla, M.; Sepulveda, F.; Colley, M. sEMG Techniques to Detect and Predict Localised Muscle Fatigue; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- González-Izal, M.; Malanda, A.; Gorostiaga, E.; Izquierdo, M. Electromyographic models to assess muscle fatigue. J. Electromyogr. Kinesiol. 2012, 22, 501–512. [Google Scholar] [CrossRef]
- Cardoso, A.; Colim, A.; Sousa, N. The Effects of a Passive Exoskeleton on Muscle Activity and Discomfort in Industrial Tasks. In Occupational and Environmental Safety and Health II; Springer: Berlin/Heidelberg, Germany, 2020; pp. 237–245. [Google Scholar]
- Toxiri, S.; Näf, M.B.; Lazzaroni, M.; Fernández, J.; Sposito, M.; Poliero, T.; Monica, L.; Anastasi, S.; Caldwell, D.G.; Ortiz, J. Back-Support Exoskeletons for Occupational Use: An Overview of Technological Advances and Trends. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Fox, R.R.; Lu, M.L.; Occhipinti, E.; Jaeger, M. Understanding outcome metrics of the revised NIOSH lifting equation. Appl. Ergon. 2019, 81, 102897. [Google Scholar] [CrossRef]
- Ergo/IBV–English. Available online: https://www.ergoibv.com/en/ (accessed on 5 May 2022).
- Waters, T.R.; Putz-Anderson, V.; Garg, A. Applications Manual for the Revised NIOSH Lifting Equation; Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication: Cincinnati, OH, USA, 1994. [Google Scholar]
- Waters, T.R. Revised NIOSH Lifting Equation. In Occupational Ergonomics; CRC Press: Boca Raton, FL, USA, 2012; pp. 908–945. [Google Scholar]
- UNE-EN 1005-2:2004+A1:2009; Safety of Machinery—Human Physical Performance—Part 2: Manual Handling of Machinery and Component Parts of Machinery. UNE Normalización Española: Madrid, Spain, 2009.
- Snook, S.H.; Ciriello, V.M. The design of manual handling tasks: Revised tables of maximum acceptable weights and forces. Ergonomics 1991, 34, 1197–1213. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Krašna, S.; Đorđević, S.; Hribernik, M.; Trajkovski, A. A Novel Approach to Measuring Muscle Mechanics in Vehicle Collision Conditions. Sensors 2017, 17, 1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brereton, L.C.; McGill, S.M. Frequency response of spine extensors during rapid isometric contractions: Effects of muscle length and tension. J. Electromyogr. Kinesiol. 1998, 8, 227–232. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231. [Google Scholar] [CrossRef] [PubMed]
- De Rosario-Martinez, H.; Fox, J.; Team, R.C. phia: Post-Hoc Interaction Analysis. R Package Version 0.2-1. 2015. Available online: http://cran.r-project.org/web/packages/phia/ (accessed on 23 May 2022).
- De Rosario, H. Analysing Interactions of Fitted Models. 2012. Available online: http://cran.r-project.org/web/packages/phia/vignettes/ (accessed on 23 May 2022).
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Champely, S.; Ekstrom, C.; Dalgaard, P.; Gill, J.; Weibelzahl, S.; Anandkumar, A.; Ford, C.; Volcic, R.; De Rosario, H. pwr: Basic Functions for Power Analysis. 2020. Available online: https://cran.r-project.org/web/packages/pwr/ (accessed on 23 May 2022).
- Kim, H.K.; Hussain, M.; Park, J.; Lee, J.; Lee, J.W. Analysis of Active Back-Support Exoskeleton During Manual Load-Lifting Tasks. J. Med. Biol. Eng. 2021, 41, 704–714. [Google Scholar] [CrossRef]
- Lazzaroni, M.; Poliero, T.; Sposito, M.; Toxiri, S.; Caldwell, D.G.; Di Natali, C.; Ortiz, J. Back-Support Exoskeleton Control Strategy for Pulling Activities: Design and Preliminary Evaluation. Designs 2021, 5, 39. [Google Scholar] [CrossRef]
- Glinski, A.v.; Yilmaz, E.; Mrotzek, S.; Marek, E.; Jettkant, B.; Brinkemper, A.; Fisahn, C.; Schildhauer, T.A.; Geßmann, J. Effectiveness of an on-body lifting aid (HAL® for care support) to reduce lower back muscle activity during repetitive lifting tasks. J. Clin. Neurosci. 2019, 63, 249–255. [Google Scholar] [CrossRef]
- Lerner, Z.F.; Damiano, D.L.; Bulea, T.C. A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy. Sci. Transl. Med. 2017, 9, eaam9145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Orekhov, G.; Lerner, Z.F. Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study. Gait Posture 2020, 95, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Kern, M.; Fowkes, E.; Afzal, T.; Contreras-Vidal, J.L.; Francisco, G.E.; Chang, S.H. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. J. Neural Eng. 2021, 18, 046039. [Google Scholar] [CrossRef] [PubMed]
- Rampichini, S.; Vieira, T.M.; Castiglioni, P.; Merati, G. Complexity Analysis of Surface Electromyography for Assessing the Myoelectric Manifestation of Muscle Fatigue: A Review. Entropy 2020, 22, 529. [Google Scholar] [CrossRef] [PubMed]
Muscle | VRMS(%) | TZC(%) | FMN(%) | FMD(%) | log(FIn)(%) |
---|---|---|---|---|---|
Erect.S. | **** | −0.3 ± 0.9 | −0.6 ± 0.9 | ** | |
Semit. | **** | *** | * | * | * |
Glut. | ** | 1.1 ± 1.3 | 1.4 ± 1.5 | 1 ± 2 | ± 9 ** |
Quad. | ± 4 * | 0.5 ± 1.1 | 0.2 ± 1.1 | 0.4 ± 1.8 | 4 ± 11 |
Lumbar % | Right Hip % | Right Knee % | |||
---|---|---|---|---|---|
Flexion Extension | −3 ± 1 | Rotation | −8 ± 5 | Flexion Extension | −5 ± 3 |
Rotation | −39 ± 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iranzo, S.; Piedrabuena, A.; García-Torres, F.; Martinez-de-Juan, J.L.; Prats-Boluda, G.; Sanchis, M.; Belda-Lois, J.-M. Assessment of a Passive Lumbar Exoskeleton in Material Manual Handling Tasks under Laboratory Conditions. Sensors 2022, 22, 4060. https://doi.org/10.3390/s22114060
Iranzo S, Piedrabuena A, García-Torres F, Martinez-de-Juan JL, Prats-Boluda G, Sanchis M, Belda-Lois J-M. Assessment of a Passive Lumbar Exoskeleton in Material Manual Handling Tasks under Laboratory Conditions. Sensors. 2022; 22(11):4060. https://doi.org/10.3390/s22114060
Chicago/Turabian StyleIranzo, Sofía, Alicia Piedrabuena, Fernando García-Torres, Jose Luis Martinez-de-Juan, Gema Prats-Boluda, Mercedes Sanchis, and Juan-Manuel Belda-Lois. 2022. "Assessment of a Passive Lumbar Exoskeleton in Material Manual Handling Tasks under Laboratory Conditions" Sensors 22, no. 11: 4060. https://doi.org/10.3390/s22114060
APA StyleIranzo, S., Piedrabuena, A., García-Torres, F., Martinez-de-Juan, J. L., Prats-Boluda, G., Sanchis, M., & Belda-Lois, J.-M. (2022). Assessment of a Passive Lumbar Exoskeleton in Material Manual Handling Tasks under Laboratory Conditions. Sensors, 22(11), 4060. https://doi.org/10.3390/s22114060