An Intelligent System for Early Recognition of Alzheimer’s Disease Using Neuroimaging
<p>The main framework for the proposed method.</p> "> Figure 2
<p>Class distribution of the MRI dataset.</p> "> Figure 3
<p>Details of dataset splitting per class.</p> "> Figure 4
<p>Detailed workflow of data used in the proposed model.</p> "> Figure 5
<p>Deployment of the developed system architecture.</p> "> Figure 6
<p>Training/validation accuracies and training loss/validation loss: (<b>a</b>) model without dropout; (<b>b</b>) mode with dropout; (<b>c</b>) model with dropout and weight decay discussions.</p> "> Figure 7
<p>Confusion matrices of proposed model based on Kaiming weight initialization on test data: (<b>a</b>) 5-way multiclass; (<b>b</b>) 4-way multiclass; (<b>c</b>) 3-way multiclass.</p> "> Figure 8
<p>Per class classification report: (<b>a</b>) precision; (<b>b</b>) recall; (<b>c</b>) F1-Score.</p> "> Figure 9
<p>The t-SNE projection visualization of several MRI features: (<b>a</b>) 5-way multiclass classification; (<b>b</b>) 4-way multiclass classification; (<b>c</b>) 3-way multiclass classification.</p> "> Figure 10
<p>Grad-CAM explanation for the prediction of class AD: (<b>a</b>) MRI image, (<b>b</b>) Grad-CAM attention map.</p> "> Figure 11
<p>Grad-CAM explanation for the prediction of class EMCI: (<b>a</b>) MRI image, (<b>b</b>) Grad-CAM attention map.</p> "> Figure 12
<p>Grad-CAM explanation for the prediction of class CN: (<b>a</b>) MRI image, (<b>b</b>) Grad-CAM attention map.</p> "> Figure 13
<p>Grad-CAM explanation for the prediction of class MCI: (<b>a</b>) MRI image, (<b>b</b>) Grad-CAM attention map.</p> "> Figure 14
<p>Grad-CAM explanation for the prediction of class LMCI: (<b>a</b>) MRI image, (<b>b</b>) Grad-CAM attention map.</p> ">
Abstract
:1. Introduction
- A hybrid pre-trained CNN model for the early diagnosis of AD.
- A deep feature concatenation method for merging deep features collected from various pre-trained CNNs.
- Weight randomization to lessen the gap between feature maps in the concatenation of fully connected layers.
- Gradient-weighted class activation map to visualize discriminative regions of the image to explain the model’s decision.
2. Related Work
3. Proposed Randomized Concatenated Deep Features Approach
3.1. Dataset
3.2. Deep Feature Extraction
3.3. Concatenation of Deep Features
3.4. Weight Randomization and Classification
3.5. Gradient-Weighted Class Activation Map (Grad-CAM)
3.6. Implementation Details
4. Experimental Results
5. Discussion
6. Comparison with Existing Methods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, T.M.; Youssef, M.A.M.; Bakry, A.A.; El-Keiy, M.M. Alzheimer’s disease improved through the activity of mitochondrial chain complexes and their gene expression in rats by boswellic acid. Metab. Brain Dis. 2021, 36, 255–264. [Google Scholar] [CrossRef]
- Tadokoro, K.; Yamashita, T.; Fukui, Y.; Nomura, E.; Ohta, Y.; Ueno, S.; Nishina, S.; Tsunoda, K.; Wakutani, Y.; Takao, Y.; et al. Early detection of cognitive decline in mild cognitive impairment and Alzheimer’s disease with a novel eye tracking test. J. Neurol. Sci. 2021, 427, 117529. [Google Scholar] [CrossRef]
- Zhang, T.; Liao, Q.; Zhang, D.; Zhang, C.; Yan, J.; Ngetich, R.; Zhang, J.; Jin, Z.; Li, L. Predicting MCI to AD Conversation Using Integrated sMRI and rs-fMRI: Machine Learning and Graph Theory Approach. Front. Aging Neurosci. 2021, 13, 429. [Google Scholar] [CrossRef]
- Hojjati, S.H.; Ebrahimzadeh, A.; Khazaee, A.; Babajani-Feremi, A. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J. Neurosci. Methods 2017, 282, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Lin, Q.; Li, T.; Wang, X.; Yuan, H.; Yu, X.; He, Y.; Wang, H. Disrupted structural and functional brain networks in Alzheimer’s disease. Neurobiol. Aging 2019, 75, 71–82. [Google Scholar] [CrossRef]
- Zeng, N.; Qiu, H.; Wang, Z.; Liu, W.; Zhang, H.; Li, Y. A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease. Neurocomputing 2018, 320, 195–202. [Google Scholar] [CrossRef]
- Gamberger, D.; Lavrač, N.; Srivatsa, S.; Tanzi, R.E.; Doraiswamy, P.M. Identification of clusters of rapid and slow decliners among subjects at risk for Alzheimer’s disease. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bi, X.; Li, S.; Xiao, B.; Li, Y.; Wang, G.; Ma, X. Computer aided Alzheimer’s disease diagnosis by an unsupervised deep learning technology. Neurocomputing 2020, 392, 296–304. [Google Scholar] [CrossRef]
- Afzal, S.; Maqsood, M.; Khan, U.; Mehmood, I.; Nawaz, H.; Aadil, F.; Song, O.Y.; Nam, Y. Alzheimer Disease Detection Techniques and Methods: A Review. Int. J. Interact. Multimed. Artif. Intell. 2021, 6, 26–38. [Google Scholar] [CrossRef]
- Wen, J.; Thibeau-Sutre, E.; Diaz-Melo, M.; Samper-González, J.; Routier, A.; Bottani, S.; Dormont, D.; Durrleman, S.; Burgos, N.; Colliot, O.; et al. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med. Image Anal. 2020, 63, 101694. [Google Scholar] [CrossRef]
- Noor, M.B.T.; Zenia, N.Z.; Kaiser, M.S.; Mamun, S.A.; Mahmud, M. Application of deep learning in detecting neurological disorders from magnetic resonance images: A survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Inf. 2020, 7, 11. [Google Scholar] [CrossRef]
- Li, H.; Habes, M.; Wolk, D.A.; Fan, Y. A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimer’s Dement. 2019, 15, 1059–1070. [Google Scholar] [CrossRef]
- Nawaz, H.; Maqsood, M.; Afzal, S.; Aadil, F.; Mehmood, I.; Rho, S. A deep feature-based real-time system for Alzheimer disease stage detection. Multimed. Tools Appl. 2020, 80, 35789–35807. [Google Scholar] [CrossRef]
- Shakarami, A.; Tarrah, H.; Mahdavi-Hormat, A. A CAD system for diagnosing Alzheimer’s disease using 2D slices and an improved AlexNet-SVM method. Optik 2020, 212, 164237. [Google Scholar] [CrossRef]
- Hon, M.; Khan, N.M. Towards Alzheimer’s disease classification through transfer learning. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 1166–1169. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Joshi, P.S.; Miller, M.I.; Xue, C.; Zhou, X.; Karjadi, C.; Chang, G.H.; Joshi, A.S.; Dwyer, B.; Zhu, S.; et al. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain 2020, 143, 1920–1933. [Google Scholar] [CrossRef]
- Kadry, S.; Taniar, D.; Damasevicius, R.; Rajinikanth, V. Automated detection of schizophrenia from brain MRI slices using optimized deep-features. In Proceedings of the 2021 IEEE 7th International Conference on Bio Signals, Images and Instrumentation, ICBSII 2021, Chennai, India, 25–27 March 2021. [Google Scholar] [CrossRef]
- Ramzan, F.; Khan, M.U.G.; Rehmat, A.; Iqbal, S.; Saba, T.; Rehman, A.; Mehmood, Z. A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer’s Disease Stages Using Resting-State fMRI and Residual Neural Networks. J. Med. Syst. 2019, 44, 37. [Google Scholar] [CrossRef]
- Amin-Naji, M.; Mahdavinataj, H.; Aghagolzadeh, A. Alzheimer’s disease diagnosis from structural MRI using Siamese convolutional neural network. In Proceedings of the 2019 4th International Conference on Pattern Recognition and Image Analysis (IPRIA), Tehran, Iran, 6–7 March 2019; pp. 75–79. [Google Scholar] [CrossRef]
- Jabason, E.; Ahmad, M.O.; Swamy, M.N.S. Classification of Alzheimer’s Disease from MRI Data Using an Ensemble of Hybrid Deep Convolutional Neural Networks. In Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019; pp. 481–484. [Google Scholar] [CrossRef]
- Kadry, S.; Damasevicius, R.; Taniar, D.; Rajinikanth, V.; Lawal, I.A. U-net supported segmentation of ischemic-stroke-lesion from brain MRI slices. In Proceedings of the 2021 IEEE 7th International Conference on Bio Signals, Images and Instrumentation, ICBSII 2021, Chennai, India, 25–27 March 2021. [Google Scholar] [CrossRef]
- Maqsood, S.; Damasevicius, R.; Shah, F.M. An efficient approach for the detection of brain tumor using fuzzy logic and U-NET CNN classification. In Proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2021, Cagliari, Italy, 13–16 September 2021; pp. 105–118. [Google Scholar] [CrossRef]
- Odusami, M.; Maskeliunas, R.; Damaševičius, R.; Misra, S. Comparable study of pre-trained model on alzheimer disease classification. In Proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2021, Cagliari, Italy, 13–16 September 2021; pp. 63–74. [Google Scholar] [CrossRef]
- Lu, D.; Popuri, K.; Ding, G.W.; Balachandar, R.; Beg, M.F. Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s disease. Med. Image Anal. 2020, 46, 26–342. [Google Scholar] [CrossRef]
- Bae, J.B.; Lee, S.; Jung, W.; Park, S.; Kim, W.; Oh, H.; Han, J.W.; Kim, G.E.; Kim, J.S.; Kim, J.H.; et al. Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Sci. Rep. 2020, 10, 22252. [Google Scholar] [CrossRef]
- Farooq, A.; Anwar, S.; Awais, M.; Rehman, S. A deep CNN based multi-class classification of Alzheimer’s disease using MRI. In Proceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 18–20 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Ebrahim, D.; Ali-Eldin, A.M.T.; Moustafa, H.E.; Arafat, H. Alzheimer Disease Early Detection Using Convolutional Neural Networks. In Proceedings of the 2020 15th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 15–16 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Luo, S.; Chiong, R. Deep sequence modelling for Alzheimer’s disease detection using MRI. Comput. Biol. Med. 2021, 134, 104537. [Google Scholar] [CrossRef]
- Odusami, M.; Maskeliūnas, R.; Damaševičius, R.; Krilavičius, T. Analysis of Features of Alzheimer’s Disease: Detection of Early Stage from Functional Brain Changes in Magnetic Resonance Images Using a Finetuned ResNet18 Network. Diagnostics 2021, 11, 1071. [Google Scholar] [CrossRef]
- Prakash, D.; Madusanka, N.; Bhattacharjee, S.; Kim, C.-H.; Park, H.-G.; Choi, H.-K. Diagnosing Alzheimer’s Disease based on Multiclass MRI Scans using Transfer Learning Techniques. Curr. Med. Imaging 2021, 17, 1460–1472. [Google Scholar] [CrossRef]
- Yadav, K.S.; Miyapuram, K.P. A Novel Approach Towards Early Detection of Alzheimer’s Disease Using Deep Learning on Magnetic Resonance Images. In Proceedings of the International Conference on Brain Informatics, Padova, Italy, 17–19 September 2021; pp. 486–495. [Google Scholar] [CrossRef]
- Buvaneswari, P.R.; Gayathri, R. Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease. Arab. J. Sci. Eng. 2021, 46, 5373–5383. [Google Scholar] [CrossRef]
- Parmar, H.; Nutter, B.; Long, L.; Antani, S.; Mitra, S. Spatiotemporal feature extraction and classification of Alzheimer’s disease using deep learning 3D-CNN for fMRI data. J. Med. Imaging 2020, 7, 056001. [Google Scholar] [CrossRef]
- Ruiz, J.; Mahmud, M.; Modasshir, M. Shamim Kaiser, and for the Alzheimer’s Disease Neuroimaging Initiative, 3D DenseNet Ensemble in 4-Way Classification of Alzheimer’s Disease. In Proceedings of the International Conference on Brain Informatics, Padova, Italy, 19 September 2020; pp. 85–96. [Google Scholar] [CrossRef]
- Solano-Rojas, B.; Villalón-Fonseca, R.; Marín-Raventós, G. Alzheimer’s Disease Early Detection Using a Low Cost Three-Dimensional Densenet-121 Architecture. In The Impact of Digital Technologies on Public Health in Developed and Developing Countries, Proceedings of the International Conference on Smart Homes and Health Telematics, Hammamet, Tunisia, 24–26 June 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–15. [Google Scholar] [CrossRef]
- Wang, H.; Shen, Y.; Wang, S.; Xiao, T.; Deng, L.; Wang, X.; Zhao, X. Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. Neurocomputing 2019, 333, 145–156. [Google Scholar] [CrossRef]
- Naz, S.; Ashraf, A.; Zaib, A. Transfer learning using freeze features for Alzheimer neurological disorder detection using ADNI dataset. Multimed. Syst. 2021, 1–10. [Google Scholar] [CrossRef]
- Mehmood, A.; Yang, S.; Feng, Z.; Wang, M.; Ahmad, A.S.; Khan, R.; Maqsood, M.; Yaqub, M. A Transfer Learning Approach for Early Diagnosis of Alzheimer’s Disease on MRI Images. Neuroscience 2021, 460, 43–52. [Google Scholar] [CrossRef]
- Jain, R.; Jain, N.; Aggarwal, A.; Hemanth, D.J. Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cogn. Syst. Res. 2019, 57, 147–159. [Google Scholar] [CrossRef]
- Kumar, A.; Dadheech, P.; Dogiwal, S.R.; Kumar, S.; Kumari, R. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window Fusion Convolutional Neural Network. In Computer-Aided Design and Diagnosis Methods for Biomedical Applications; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Maqsood, M.; Nazir, F.; Khan, U.; Aadil, F.; Jamal, H.; Mehmood, I.; Song, O.-Y. Transfer Learning Assisted Classification and Detection of Alzheimer’s Disease Stages Using 3D MRI Scans. Sensors 2019, 19, 2645. [Google Scholar] [CrossRef] [Green Version]
- Acharya, H.; Mehta, R.; Singh, D.K. Alzheimer Disease Classification Using Transfer Learning. In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021; pp. 1503–1508. [Google Scholar] [CrossRef]
- Kazemi, Y.; Houghten, S. A deep learning pipeline to classify different stages of Alzheimer’s disease from fMRI data. In Proceedings of the 2018 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), St. Louis, MO, USA, 30 May–2 June 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Shanmugam, J.V.; Duraisamy, B.; Simon, B.C.; Bhaskaran, P. Alzheimer’s disease classification using pre-trained deep networks. Biomed. Signal Processing Control 2022, 71, 103217. [Google Scholar] [CrossRef]
- Hazarika, R.A.; Kandar, D.; Maji, A.K. An experimental analysis of different Deep Learning based Models for Alzheimer’s Disease classification using Brain Magnetic Resonance Images. J. King Saud Univ.—Comput. Inf. Sci. 2021. [Google Scholar] [CrossRef]
- Jmour, N.; Zayen, S.; Abdelkrim, A. Convolutional neural networks for image classification. In Proceedings of the 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 22–25 March 2018; pp. 397–402. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.D.; Lin, D.; Lin, Z.; Cao, J. Deep CNNs for microscopic image classification by exploiting transfer learning and feature concatenation. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. Available online: http://arxiv.org/abs/1512.03385 (accessed on 20 April 2021).
- Lyu, Z.; ElSaid, A.; Karns, J.; Mkaouer, M.; Desell, T. An Experimental Study of Weight Initialization and Lamarckian Inheritance on Neuroevolution. In Applications of Evolutionary Computation; Springer: Cham, Switzerland, 2021; pp. 584–600. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Ashraf, A.; Naz, S.; Shirazi, S.H.; Razzak, I.; Parsad, M. Deep transfer learning for alzheimer neurological disorder detection. Multimed. Tools Appl. 2021, 80, 30117–30142. [Google Scholar] [CrossRef]
- Jin, H.; Song, Q.; Hu, X. Auto-keras: An efficient neural architecture search system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, Anchorage, AK, USA, 4–8 August 2019. [Google Scholar]
- Toniolo, S.; Serra, L.; Olivito, G.; Marra, C.; Bozzali, M.; Cercignani, M. Patterns of Cerebellar Gray Matter Atrophy Across Alzheimer’s Disease Progression. Front. Cell. Neurosci. 2018, 12, 430. [Google Scholar] [CrossRef]
- Todd, K.L.; Brighton, T.; Norton, E.; Schick, S.; Elkins, W.; Pletnikova, O.; Fortinsky, R.H.; Troncoso, J.C.; Molfese, P.J.; Resnick, S.M.; et al. Ventricular and Periventricular Anomalies in the Aging and Cognitively Impaired Brain. Front. Aging Neurosci. 2018, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Femir-Gurtuna, B.; Gürtuna, B.F.; Kurt, E.; Ulasoglu-Yildiz, C.; Bayram, A.; Yildirim, E.; Büyükişcan, E.S.; Bilgic, B. White-matter changes in early and late stages of mild cognitive impairment. J. Clin. Neurosci. 2020, 78, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Houck, A.L.; Gutierrez, J.; Gao, F.; Igwe, K.; Colon, J.; Black, S.; Brickman, A. Increased Diameters of the Internal Cerebral Veins and the Basal Veins of Rosenthal Are Associated with White Matter Hyperintensity Volume. Am. J. Neuroradiol. 2019, 40, 1712–1718. [Google Scholar] [CrossRef] [Green Version]
- Puente-Castro, A.; Fernandez-Blanco, E.; Pazos, A.; Munteanu, C.R. Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques. Comput. Biol. Med. 2020, 120, 103764. [Google Scholar] [CrossRef]
Parameters | Description |
---|---|
Tensor | n-dimensional torch.Tensor |
a | Negative slope of the rectifier |
mode | “Fan _in” conserves the degree of the variance of the weights in the forward pass |
nonlinearity | The non-linear function (nn.functional name) |
Ways of Multiclass | Epochs | Training Accuracy (%) | Validation Accuracy (%) | Training Loss | Validation Loss |
---|---|---|---|---|---|
5 Ways | 1 | 54.93 | 91.76 | 1.09 | 0.32 |
2 | 87.99 | 98.85 | 0.33 | 0.08 | |
3 | 96.11 | 99.87 | 0.14 | 0.02 | |
4 | 97.97 | 99.78 | 0.08 | 0.01 | |
5 | 98.97 | 99.91 | 0.06 | 0.01 | |
6 | 99.60 | 99.10 | 0.04 | 0.09 | |
4 Ways | 1 | 50.59 | 89.21 | 1.17 | 0.49 |
2 | 86.86 | 98.89 | 0.42 | 0.12 | |
3 | 95.68 | 99.56 | 0.17 | 0.04 | |
4 | 96.99 | 99.61 | 0.10 | 0.02 | |
5 | 97.91 | 99.78 | 0.07 | 0.01 | |
6 | 99.30 | 98.90 | 0.05 | 0.16 | |
3 Ways | 1 | 68.26 | 93.15 | 0.76 | 0.25 |
2 | 89.92 | 99.26 | 0.28 | 0.07 | |
3 | 95.36 | 99.78 | 0.14 | 0.03 | |
4 | 97.17 | 99.85 | 0.09 | 0.01 | |
5 | 97.90 | 99.93 | 0.07 | 0.01 | |
6 | 98.50 | 98.70 | 0.04 | 0.16 |
Ways of Multiclass | Epochs | Training Accuracy (%) | Validation Accuracy (%) | Training Loss | Validation Loss |
---|---|---|---|---|---|
5 Ways | 1 | 51.20 | 81.68 | 1.22 | 0.67 |
2 | 81.22 | 96.54 | 0.59 | 0.22 | |
3 | 93.53 | 99.07 | 0.25 | 0.08 | |
4 | 97.32 | 99.51 | 0.13 | 0.04 | |
5 | 98.61 | 99.69 | 0.08 | 0.02 | |
6 | 99.30 | 99.73 | 0.05 | 0.02 | |
4 Ways | 1 | 44.88 | 78.63 | 1.25 | 0.77 |
2 | 79.29 | 95.08 | 0.64 | 0.28 | |
3 | 92.96 | 99.34 | 0.28 | 0.09 | |
4 | 96.75 | 99.83 | 0.14 | 0.04 | |
5 | 98.29 | 99.94 | 0.09 | 0.02 | |
6 | 98.84 | 99.98 | 0.06 | 0.01 | |
3 Ways | 1 | 62.12 | 86.16 | 0.85 | 0.39 |
2 | 85.56 | 96.35 | 0.40 | 0.15 | |
3 | 93.26 | 99.18 | 0.22 | 0.07 | |
4 | 96.63 | 99.85 | 0.13 | 0.03 | |
5 | 97.33 | 99.78 | 0.09 | 0.02 | |
6 | 98.31 | 99.85 | 0.07 | 0.01 |
Weight Initialization | Ways of Multiclass | Test Accuracy (%) | Test Loss |
---|---|---|---|
Kaiming | 5 ways | 98.86 | 0.05 |
4 ways | 93.06 | 0.14 | |
3 ways | 98.21 | 0.06 | |
Xaiver | 5 ways | 87.50 | 0.43 |
4 ways | 88.89 | 0.24 | |
3 ways | 96.21 | 0.04 |
Ways of Multiclass | Accuracy (%) First Test Sample | Accuracy (%) Second Test Sample | Accuracy (%) Third Test Sample | Accuracy (%) Fourth Test Sample | Standard Deviation |
---|---|---|---|---|---|
5 ways | 98.86 | 98.07 | 98.98 | 98.90 | 0.42 |
4 ways | 93.06 | 93.02 | 94.10 | 93.20 | 0.50 |
3 ways | 98.21 | 98.40 | 98.04 | 99.01 | 0.42 |
Authors | Methodology | Multiclass | Accuracy (%) | Precision (%) | Recall (%) |
---|---|---|---|---|---|
Ramzan et al., (2019) [18] | Resnet 18 (Finetuning) | 5 Ways AD/CN/EMCI/LMCI/MCI | 97.88 | 98.10 | 97.89 |
Parmar et al., (2020) [33] | 3D CNN | 4 Ways AD/CN/EMCI/LMCI | 93.00 | 93.18 | - |
Puete-Castro et al., (2020) [58] | Resnet18 and SVM | 3 Ways AD/CN/MCI | 78.72 | 68.96 | 58.66 |
Proposed | Resnet18 and DenseNet121 with Randomized weight | 5 Ways AD/CN/EMCI/LMCI/MCI | 98.86 | 98.94 | 98.89 |
Proposed | 4 Ways AD/CN/EMCI/LMCI | 93.06 | 94.56 | 93.05 | |
Proposed | 3 Ways AD/CN/MCI | 98.21 | 98.14 | 98.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odusami, M.; Maskeliūnas, R.; Damaševičius, R. An Intelligent System for Early Recognition of Alzheimer’s Disease Using Neuroimaging. Sensors 2022, 22, 740. https://doi.org/10.3390/s22030740
Odusami M, Maskeliūnas R, Damaševičius R. An Intelligent System for Early Recognition of Alzheimer’s Disease Using Neuroimaging. Sensors. 2022; 22(3):740. https://doi.org/10.3390/s22030740
Chicago/Turabian StyleOdusami, Modupe, Rytis Maskeliūnas, and Robertas Damaševičius. 2022. "An Intelligent System for Early Recognition of Alzheimer’s Disease Using Neuroimaging" Sensors 22, no. 3: 740. https://doi.org/10.3390/s22030740
APA StyleOdusami, M., Maskeliūnas, R., & Damaševičius, R. (2022). An Intelligent System for Early Recognition of Alzheimer’s Disease Using Neuroimaging. Sensors, 22(3), 740. https://doi.org/10.3390/s22030740