Nothing Special   »   [go: up one dir, main page]

Skip to main content

3D DenseNet Ensemble in 4-Way Classification of Alzheimer’s Disease

  • Conference paper
  • First Online:
Brain Informatics (BI 2020)

Abstract

One of the major causes of death in developing nations is the Alzheimer’s Disease (AD). For the treatment of this illness, is crucial to early diagnose mild cognitive impairment (MCI) and AD, with the help of feature extraction from magnetic resonance images (MRI). This paper proposes a 4-way classification of 3D MRI images using an ensemble implementation of 3D Densely Connected Convolutional Networks (3D DenseNets) models. The research makes use of dense connections that improve the movement of data within the model, due to having each layer linked with all the subsequent layers in a block. Afterwards, a probability-based fusion method is employed to merge the probabilistic output of each unique individual classifier model. Available through the ADNI dataset, preprocessed 3D MR images from four subject groups (i.e., AD, healthy control, early MCI, and late MCI) were acquired to perform experiments. In the tests, the proposed approach yields better results than other state-of-the-art methods dealing with 3D MR images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrol, A., Bhattarai, M., Fedorov, A., Du, Y., Plis, S., Calhoun, V.: Deep residual learning for neuroimaging: an application to predict progression to Alzheimer’s disease. J. Neurosci. Methods 339, 108701 (2020)

    Article  Google Scholar 

  2. Ali, H.M., Kaiser, M.S., Mahmud, M.: Application of convolutional neural network in segmenting brain regions from MRI data. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 136–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_14

    Chapter  Google Scholar 

  3. Association, A.: 2014 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 10(2), e47–e92 (2014)

    Article  Google Scholar 

  4. Basaia, S., et al.: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin. 21, 101645 (2019)

    Article  Google Scholar 

  5. Dimitriadis, S.I., Liparas, D., Tsolaki, M.N., Initiative, A.D.N., et al.: Random forest feature selection, fusion and ensemble strategy: combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and Alzheimer’s disease patients: from the Alzheimer’s disease neuroimaging initiative (ADNI) database. J. Neurosci. Methods 302, 14–23 (2018)

    Article  Google Scholar 

  6. Dongren, Y., Calhoun, V., Fu, Z., Du, Y., Sui, J.: An ensemble learning system for a 4-way classification of Alzheimer’s disease and mild cognitive impairment. J. Neurosci. Methods 302, 75–81 (2018)

    Article  Google Scholar 

  7. Fabietti, M., et al.: Neural network-based artifact detection in local field potentials recorded from chronically implanted neural probes. In: Proceedings of the IJCNN, pp. 1–8 (2020)

    Google Scholar 

  8. Farooq, A., Anwar, S., Awais, M., Rehman, S.: A deep CNN based multi-class classification of Alzheimer’s disease using MRI. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6 (2017)

    Google Scholar 

  9. Kaiser, M.S., et al.: Advances in crowd analysis for urban applications through urban event detection. IEEE Trans. Intell. Transp. Syst. 19(10), 3092–3112 (2018)

    Article  Google Scholar 

  10. Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y.: Residual and plain convolutional neural networks for 3D brain MRI classification. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 835–838 (2017)

    Google Scholar 

  11. Liu, S., et al.: ADNI: multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 62(4), 1132–1140 (2015)

    Article  Google Scholar 

  12. Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: 2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014, pp. 1015–1018, January 2014

    Google Scholar 

  13. Lu, D., Popuri, K., Ding, G.W., Balachandar, R., Beg, M.F.: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural mr and FDG-PET images. Sci. Rep. 8(1), 1–13 (2018)

    Article  Google Scholar 

  14. Mahmud, M., Kaiser, M.S., Hussain, A.: Deep learning in mining biological data, pp. 1–36. arXiv:2003.00108 [cs, q-bio, stat], February 2020

  15. Mahmud, M., Kaiser, M.S., Rahman, M.M., Rahman, M.A., Shabut, A., Al-Mamun, S., Hussain, A.: A brain-inspired trust management model to assure security in a cloud based IoT framework for neuroscience applications. Cogn. Comput. 10(5), 864–873 (2018)

    Article  Google Scholar 

  16. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  17. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.: Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34(7), 939–944 (1984)

    Article  Google Scholar 

  18. Miah, Y., Prima, C.N.E., Seema, S.J., Mahmud, M., Kaiser, M.S.: Performance comparison of machine learning techniques in identifying dementia from open access clinical datasets. In: Proceedings of the ICACIn, pp. 69–78. Springer, Singapore (2020)

    Google Scholar 

  19. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mahmud, M., Al Mamun, S.: Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 115–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_12

    Chapter  Google Scholar 

  20. Orojo, O., Tepper, J., McGinnity, T., Mahmud, M.: A multi-recurrent network for crude oil price prediction. In: Proceedings of the SSCI, pp. 2940–2945, December 2019

    Google Scholar 

  21. Rabby, G., Azad, S., Mahmud, M., Zamli, K.Z., Rahman, M.M.: TeKET: a tree-based unsupervised keyphrase extraction technique. Cogn. Comput. (2020). https://doi.org/10.1007/s12559-019-09706-3

  22. Tang, H., Yao, E., Tan, G., Guo, X.: A fast and accurate 3D fine-tuning convolutional neural network for Alzheimer’s disease diagnosis. In: Zhou, Z.-H., Yang, Q., Gao, Y., Zheng, Yu. (eds.) ICAI 2018. CCIS, vol. 888, pp. 115–126. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2122-1_9

    Chapter  Google Scholar 

  23. Tania, M.H., et al.: Assay type detection using advanced machine learning algorithms. In: Proceedings of the SKIMA, pp. 1–8 (2019)

    Google Scholar 

  24. Wang, H., et al.: Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. Neurocomputing 333, 145–156 (2019)

    Article  Google Scholar 

  25. Watkins, J., Fabietti, M., Mahmud, M.: SENSE: a student performance quantifier using sentiment analysis. In: Proceedings of the IJCNN, pp. 1–6 (2020)

    Google Scholar 

  26. Wen, G., Hou, Z., Li, H., Li, D., Jiang, L., Xun, E.: Ensemble of deep neural networks with probability-based fusion for facial expression recognition. Cogn. Comput. 9, 597–610 (2017). https://doi.org/10.1007/s12559-017-9472-6

    Article  Google Scholar 

  27. Yahaya, S.W., Lotfi, A., Mahmud, M.: A consensus novelty detection ensemble approach for anomaly detection in activities of daily living. Appl. Soft Comput. 83, 105613 (2019)

    Article  Google Scholar 

  28. Yahaya, S.W., Lotfi, A., Mahmud, M., Machado, P., Kubota, N.: Gesture recognition intermediary robot for abnormality detection in human activities. In: Proceedings of the SSCI, pp. 1415–1421, December 2019

    Google Scholar 

  29. Zohora, M.F., et al.: Forecasting the risk of type II diabetes using reinforcement learning. In: Proceedings of the ICIEV, pp. 1–6 (2020)

    Google Scholar 

Download references

Acknowledgment

*Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). For up-to-date information, see http://adni-info.org/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mufti Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruiz, J., Mahmud, M., Modasshir, M., Shamim Kaiser, M., Alzheimer’s Disease Neuroimaging Initiative, f.t. (2020). 3D DenseNet Ensemble in 4-Way Classification of Alzheimer’s Disease. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds) Brain Informatics. BI 2020. Lecture Notes in Computer Science(), vol 12241. Springer, Cham. https://doi.org/10.1007/978-3-030-59277-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59277-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59276-9

  • Online ISBN: 978-3-030-59277-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics