Multimedia Cryptosystem for IoT Applications Based on a Novel Chaotic System around a Predefined Manifold
<p>Proposed framework for the secure transmission of multimedia data in IoT environment.</p> "> Figure 2
<p>The chaotic dynamics of Equation (<a href="#FD1-sensors-22-00334" class="html-disp-formula">1</a>) with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced separators="" open="(" close=")"> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> </mfenced> <mo>=</mo> <mfenced separators="" open="(" close=")"> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> </mfenced> </mrow> </semantics></math> in (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>X</mi> <mo>−</mo> <mi>Y</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>X</mi> <mo>−</mo> <mi>Z</mi> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>Y</mi> <mo>−</mo> <mi>Z</mi> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>X</mi> <mo>−</mo> <mi>Y</mi> <mo>−</mo> <mi>Z</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>Time series of Equation (<a href="#FD1-sensors-22-00334" class="html-disp-formula">1</a>) with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced separators="" open="(" close=")"> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> </mfenced> <mo>=</mo> <mfenced separators="" open="(" close=")"> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> </mfenced> </mrow> </semantics></math>.</p> "> Figure 4
<p>3D chaotic dynamics of Equation (<a href="#FD1-sensors-22-00334" class="html-disp-formula">1</a>) and the three pre-located manifolds (<b>a</b>–<b>c</b>).</p> "> Figure 5
<p>Bifurcation diagram of Equation (<a href="#FD1-sensors-22-00334" class="html-disp-formula">1</a>) by changing parameter <span class="html-italic">a</span> and backward continuation method; maximum values of (<b>a</b>) <span class="html-italic">x</span> variable; (<b>b</b>) <span class="html-italic">y</span> variable; (<b>c</b>) <span class="html-italic">z</span> variable.</p> "> Figure 6
<p>The diagram of LEs by changing parameter <span class="html-italic">a</span>.</p> "> Figure 7
<p>Bifurcation diagram of the oscillator by changing parameter <span class="html-italic">a</span>; bifurcation with backward continuation method is shown in purple and with constant initial conditions is shown in blue.</p> "> Figure 8
<p>Basin of attraction of the oscillator; green, dark blue, and cyan regions show the basin of attraction for unbounded, periodic, and chaotic solutions, respectively.</p> "> Figure 9
<p>Description of the proposed cryptosystem for multimedia images.</p> "> Figure 10
<p>Experimented image dataset of dimensional 768 × 512, in which the first row denotes the plain images, while the second row describes the corresponding ciphered images.</p> "> Figure 11
<p>Plots of correlation distribution (in each direction) for Macaws image (Red channel), in which the first row denotes the plain Macaws image, while the bottom row signifies the ciphered Macaws image.</p> "> Figure 12
<p>Plots of correlation distribution (in each direction) for Macaws image (Green channel), in which the first row denotes the plain Macaws image, while the bottom row signifies the ciphered Macaws image.</p> "> Figure 13
<p>Plots of correlation distribution (in each direction) for Macaws image (Blue channel), in which the first row denotes the plain Macaws image, while the bottom row signifies the ciphered Macaws image.</p> "> Figure 14
<p>Outcomes of decrypting Cipher–Macaws image using slight changes in the confidential key. (<b>a</b>) The confidential key; (<b>b</b>) The confidential key except <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </semantics></math> = 0.627500000000001; (<b>c</b>) The confidential key except <math display="inline"><semantics> <msub> <mi>y</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </semantics></math> = 0.3854000000000001; (<b>d</b>) The confidential key except <math display="inline"><semantics> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </semantics></math> = 0.7261000000000001; (<b>e</b>) The confidential key except <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </semantics></math> = 0.627499999999999; (<b>f</b>) The confidential key except <math display="inline"><semantics> <msub> <mi>y</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </semantics></math> = 0.38539999999999.</p> "> Figure 15
<p>Plots of histograms for experimented images, in which the left three columns except the first one represent the histograms of plain images, while the right three columns represent the histograms of cipher images.</p> "> Figure 16
<p>Ciphers of all-black and all-white images, and their analog histograms.</p> "> Figure 17
<p>Outcomes of noise attack, in which the top row refers to the defective Cipher–Macaws image by adding Salt and Pepper noise with variable densities (D) while the bottom row represents the corresponding decipher image.</p> "> Figure 18
<p>Outcomes of data loss attack, in which the top row refers to the defective Cipher–Macaws image by performing a cutting block for data with various sizes, while the bottom row represents the corresponding decipher image.</p> ">
Abstract
:1. Introduction
- Presenting a novel chaotic oscillator, in which the chaotic dynamics are around pre-located manifolds.
- Designing a novel image cryptosystem for IoT applications, of which the design is based on the nonlinear features of the presented chaotic oscillator system.
2. Proposed Framework for IoT Environment
3. Proposed Chaotic Oscillator System
4. Dynamical Properties of the Oscillator
4.1. Equilibrium Points
4.2. Bifurcation Diagram and Lyapunov Exponents
4.3. Multistability Analysis
4.4. Basin of Attraction
5. The Proposed Image Encryption Approach
- (1)
- Perform the hash function SHA256 on the plain image (PImg) to get the hash value (V).
- (2)
- Convert V into 32 integer numbers (, , , ..., ) each of 8-bit, then obtain 3 decimal numbers from these integers as follows.
- (3)
- Choose initial values for key parameters ( , , ) and update these keys using , , and .
- (4)
- Iterate the chaotic system (2) for times using the updated key parameters (, , , a) for generating 3 sequences (X, Y, Z), in which is the size of PImg.
- (5)
- Add the values of X to the values of Y as sequence W, then sort the values of W from the smallest to the largest as sequence S, and obtain the index S in W as PrVc.
- (6)
- Reshape the plain image (PImg) into a vector (PImgVc) and permute PImgVc using the produced vector PrVc as follows.
- (7)
- Construct the key sequence (K) by adapting the sequence Z into integers.
- (8)
- Perform Bitwise-Xor operation on the permuted vector PerImgVc and K to construct the cipher image CImg.
6. Experimental Outcomes
6.1. Time Efficiency
6.2. Randomness Analysis
6.3. Correlation Analysis
6.4. Differential Analysis
6.5. Key-Space Analysis
6.6. Key Sensitivity Analysis
6.7. Histogram Analysis
6.8. Entropy Analysis
6.9. Classical Types of Attack
6.10. Occlusion Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Latif, A.A.A.; Abd-El-Atty, B.; Mazurczyk, W.; Fung, C.; Venegas-Andraca, S.E. Secure Data Encryption Based on Quantum Walks for 5G Internet of Things Scenario. IEEE Trans. Netw. Serv. Manag. 2020, 17, 118–131. [Google Scholar] [CrossRef]
- Bubukayr, M.A.S.; Almaiah, M.A. Cybersecurity concerns in smart-phones and applications: A survey. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 725–731. [Google Scholar]
- Almaiah, M.A. Almaiah, M.A. A New Scheme for Detecting Malicious Attacks in Wireless Sensor Networks Based on Blockchain Technology. In Artificial Intelligence and Blockchain for Future Cybersecurity Applications; Springer: Cham, Switzerland, 2021; pp. 217–234. [Google Scholar]
- AlMedires, M.; AlMaiah, M. Cybersecurity in Industrial Control System (ICS). In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 640–647. [Google Scholar]
- Zhang, S.; Wang, X.; Zeng, Z. A simple no-equilibrium chaotic system with only one signum function for generating multidirectional variable hidden attractors and its hardware implementation. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 053129. [Google Scholar] [CrossRef] [PubMed]
- Rössler, O.E. An equation for continuous chaos. Phys. Lett. A 1976, 57, 397–398. [Google Scholar] [CrossRef]
- Wang, X.; Chen, G. A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1264–1272. [Google Scholar] [CrossRef] [Green Version]
- Petrzela, J. Strange Attractors Generated by Multiple-Valued Static Memory Cell with Polynomial Approximation of Resonant Tunneling Diodes. Entropy 2018, 20, 697. [Google Scholar] [CrossRef] [Green Version]
- Moysis, L.; Volos, C.; Stouboulos, I.; Goudos, S.; Çiçek, S.; Pham, V.T.; Mishra, V.K. A Novel Chaotic System with a Line Equilibrium: Analysis and Its Applications to Secure Communication and Random Bit Generation. Telecom 2020, 1, 283–296. [Google Scholar] [CrossRef]
- Escalante-González, R.J.; Campos, E. Hyperchaotic attractors through coupling of systems without equilibria. Eur. Phys. J. Spec. Top. 2020, 229, 1309–1318. [Google Scholar] [CrossRef]
- Wang, X.; Çavuşoğlu, Ü.; Kacar, S.; Akgul, A.; Pham, V.T.; Jafari, S.; Alsaadi, F.E.; Nguyen, X.Q. S-box based image encryption application using a chaotic system without equilibrium. Appl. Sci. 2019, 9, 781. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhang, G.; Kuznetsov, N.V.; Bao, H. Hidden attractors and multistability in a modified Chua’s circuit. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105494. [Google Scholar] [CrossRef]
- Leutcho, G.D.; Kengne, J.; Kengne, L.K.; Akgul, A.; Pham, V.T.; Jafari, S. A novel chaotic hyperjerk circuit with bubbles of bifurcation: Mixed-mode bursting oscillations, multistability, and circuit realization. Phys. Scr. 2020, 95, 075216. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Wu, H.; Chen, S.; Bao, B. Extreme multistability in memristive hyper-jerk system and stability mechanism analysis using dimensionality reduction model. Eur. Phys. J. Spec. Top. 2019, 228, 1995–2009. [Google Scholar] [CrossRef]
- Bao, H.; Liu, W.; Ma, J.; Wu, H. Memristor initial-offset boosting in memristive HR neuron model with hidden firing patterns. Int. J. Bifurc. Chaos 2020, 30, 2030029. [Google Scholar] [CrossRef]
- Gong, L.; Wu, R.; Zhou, N. A New 4D Chaotic System with Coexisting Hidden Chaotic Attractors. Int. J. Bifurc. Chaos 2020, 30, 2050142. [Google Scholar] [CrossRef]
- Hua, Z.; Zhu, Z.; Yi, S.; Zhang, Z.; Huang, H. Cross-plane colour image encryption using a two-dimensional logistic tent modular map. Inf. Sci. 2021, 546, 1063–1083. [Google Scholar] [CrossRef]
- Ravichandran, D.; Murthy, B.; Balasubramanian, V.; Fathima, S.; Amirtharajan, R. An efficient medical image encryption using hybrid DNA computing and chaos in transform domain. Med. Biol. Eng. Comput. 2021, 59, 589–605. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.Y.; Ma, Y.; Zhou, N.R. Quantum multi-image compression-encryption scheme based on quantum discrete cosine transform and 4D hyper-chaotic Henon map. Quantum Inf. Process. 2021, 20, 1–24. [Google Scholar] [CrossRef]
- Duan, C.F.; Zhou, J.; Gong, L.H.; Wu, J.Y.; Zhou, N.R. New color image encryption scheme based on multi-parameter fractional discrete Tchebyshev moments and nonlinear fractal permutation method. Opt. Lasers Eng. 2022, 150, 106881. [Google Scholar] [CrossRef]
- Tong, L.J.; Zhou, N.R.; Huang, Z.J.; Xie, X.W.; Liang, Y.R. Nonlinear Multi-Image Encryption Scheme with the Reality-Preserving Discrete Fractional Angular Transform and DNA Sequences. Secur. Commun. Netw. 2021, 2021. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Dawahdeh, Z.; Almomani, O.; Alsaaidah, A.; Al-khasawneh, A.; Khawatreh, S. A new hybrid text encryption approach over mobile ad hoc network. Int. J. Electr. Comput. Eng. 2020, 10, 6461–6471. [Google Scholar] [CrossRef]
- Lai, Q.; Wan, Z.; Akgul, A.; Boyraz, O.F.; Yildiz, M.Z. Design and implementation of a new memristive chaotic system with application in touchless fingerprint encryption. Chin. J. Phys. 2020, 67, 615–630. [Google Scholar] [CrossRef]
- García-Guerrero, E.; Inzunza-González, E.; López-Bonilla, O.; Cárdenas-Valdez, J.; Tlelo-Cuautle, E. Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels. Chaos Solitons Fractals 2020, 133, 109646. [Google Scholar] [CrossRef]
- Chirakkarottu, S.; Mathew, S. A novel encryption method for medical images using 2D Zaslavski map and DNA cryptography. SN Appl. Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Jahanzaib, L.S.; Trikha, P. Changing dynamics of the first, second and third approximations of the exponential chaotic system and their application in secure communication using synchronization. Int. J. Appl. Comput. Math. 2021, 7, 1–26. [Google Scholar] [CrossRef]
- El-Latif, A.A.A.; Abd-El-Atty, B.; Belazi, A.; Iliyasu, A.M. Efficient Chaos-Based Substitution-Box and Its Application to Image Encryption. Electronics 2021, 10, 1392. [Google Scholar] [CrossRef]
- Abd-El-Atty, B.; Iliyasu, A.M.; Alaskar, H.; El-Latif, A.; Ahmed, A. A robust quasi-quantum walks-based steganography protocol for secure transmission of images on cloud-based E-healthcare platforms. Sensors 2020, 20, 3108. [Google Scholar] [CrossRef]
- True Color Kodak Images. Available online: http://r0k.us/graphics/kodak/ (accessed on 3 September 2021).
- Alanezi, A.; Abd-El-Atty, B.; Kolivand, H.; El-Latif, A.; Ahmed, A.; El-Rahiem, A.; Sankar, S.; S Khalifa, H. Securing digital images through simple permutation-substitution mechanism in cloud-based smart city environment. Secur. Commun. Netw. 2021, 2021. [Google Scholar] [CrossRef]
- Xian, Y.; Wang, X. Fractal sorting matrix and its application on chaotic image encryption. Inf. Sci. 2021, 547, 1154–1169. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Abd el Latif, A.A.; Abd-el Atty, B.; Amin, M.; Iliyasu, A.M. Quantum-inspired cascaded discrete-time quantum walks with induced chaotic dynamics and cryptographic applications. Sci. Rep. 2020, 10, 1–16. [Google Scholar]
Image Cryptosystem | Number of Encrypted Bits Per Second |
---|---|
Proposed | 9,713,394 |
Ref. [30] | 8,025,072 |
Ref. [31] | 6,381,110 |
Ref. [32] | 4,224,509 |
Test-Name | p-Value | Passed | |
---|---|---|---|
Key Stream | Cipher-Macaws | ||
Runs | 0.7913189 | 0.5294244 | √ |
DFT | 0.6543473 | 0.6036850 | √ |
Linear complexity | 0.7024604 | 0.1581112 | √ |
Block-frequency | 0.5686530 | 0.3487918 | √ |
Frequency | 0.6559749 | 0.4300353 | √ |
Universal | 0.3457104 | 0.9949709 | √ |
Serial test 1 | 0.3920807 | 0.3989737 | √ |
Serial test 2 | 0.5967691 | 0.5770354 | √ |
Overlapping templates | 0.7827032 | 0.4365690 | √ |
No overlapping templates | 0.9636127 | 0.5941496 | √ |
Long runs of ones | 0.3969673 | 0.7129090 | √ |
Approximate entropy | 0.2772607 | 0.1420810 | √ |
Rank | 0.0996206 | 0.5740640 | √ |
Random excursions variant x = 1 | 0.0963609 | 0.6213966 | √ |
Random excursions x = 1 | 0.3570832 | 0.8722024 | √ |
Cumulative sums (reverse) | 0.0620619 | 0.5399098 | √ |
Cumulative sums (forward) | 0.1740884 | 0.7368549 | √ |
Image | Direction | ||||||||
---|---|---|---|---|---|---|---|---|---|
Hor. | Ver. | Dia. | |||||||
R | G | B | R | G | B | R | G | B | |
Macaws | 0.98685 | 0.98074 | 0.98562 | 0.98874 | 0.98460 | 0.98550 | 0.98024 | 0.97349 | 0.97804 |
Cipher-Macaws | −0.00001 | −0.00005 | 0.00073 | 0.00026 | 0.00051 | −0.00078 | −0.00010 | 0.00056 | −0.00125 |
Chalet | 0.93698 | 0.92077 | 0.91862 | 0.94179 | 0.93844 | 0.92290 | 0.91195 | 0.90044 | 0.89372 |
Cipher-Chalet | 0.00083 | −0.00002 | 0.00006 | 0.00044 | −0.00044 | 0.00114 | −0.00017 | −0.00018 | 0.00058 |
Window | 0.95772 | 0.94235 | 0.95532 | 0.97114 | 0.96285 | 0.96658 | 0.93616 | 0.92107 | 0.93504 |
Cipher-Window | 0.00087 | −0.00088 | −0.00066 | 0.00012 | 0.00062 | 0.00144 | 0.00007 | 0.00033 | −0.00008 |
Houses | 0.92373 | 0.92224 | 0.90793 | 0.88870 | 0.88994 | 0.86135 | 0.82085 | 0.81976 | 0.77976 |
Cipher-Houses | 0.00085 | −0.00004 | −0.00066 | 0.00059 | 0.00072 | 0.00061 | −0.00040 | 0.00128 | −0.00075 |
Image | NPCR | UNCI |
---|---|---|
Macaws | 99.60556% | 33.49106% |
Chalet | 99.61565% | 33.45562% |
Window | 99.60988% | 33.47213% |
Houses | 99.60751% | 33.44994% |
Image | Value | Outcome | ||
---|---|---|---|---|
Red | Green | Blue | ||
Macaws | 303,687.9661 | 254,324.4518 | 603,349.4934 | Irregular |
Chalet | 817,766.5013 | 677,362.4271 | 616,936.1705 | Irregular |
Window | 515,942.4335 | 551,843.4661 | 728,008.0781 | Irregular |
Houses | 285,277.4635 | 219,680.6289 | 221,228.6081 | Irregular |
Cipher-Macaws | 244.5221 | 251.6953 | 233.6315 | Regular |
Cipher-Chalet | 258.3451 | 215.8021 | 243.8919 | Regular |
Cipher-Window | 209.8372 | 277.1874 | 254.2682 | Regular |
Cipher-Houses | 226.9335 | 248.9882 | 241.1497 | Regular |
Image | Global Entropy | Local Entropy | ||
---|---|---|---|---|
Plain | Cipher | Plain | Cipher | |
Macaws | 7.601941 | 7.999837 | 5.396978 | 7.902671 |
Chalet | 7.136653 | 7.999834 | 5.673345 | 7.903744 |
Window | 7.309858 | 7.999855 | 5.441143 | 7.902341 |
Houses | 7.673795 | 7.999874 | 6.552062 | 7.902232 |
Image | Correlation | Value | Entropy | |||
---|---|---|---|---|---|---|
Hor. | Ver. | Dia. | Global | Local | ||
All-black | −0.0002 | −0.0004 | 0.0001 | 267.7656 | 7.99926 | 7.90340 |
All-white | 0.0006 | 0.0001 | 0.0004 | 226.8008 | 7.99937 | 7.90343 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Abd El-Latif, A.A.; Jafari, S.; Rajagopal, K.; Nazarimehr, F.; Abd-El-Atty, B. Multimedia Cryptosystem for IoT Applications Based on a Novel Chaotic System around a Predefined Manifold. Sensors 2022, 22, 334. https://doi.org/10.3390/s22010334
Li L, Abd El-Latif AA, Jafari S, Rajagopal K, Nazarimehr F, Abd-El-Atty B. Multimedia Cryptosystem for IoT Applications Based on a Novel Chaotic System around a Predefined Manifold. Sensors. 2022; 22(1):334. https://doi.org/10.3390/s22010334
Chicago/Turabian StyleLi, Li, Ahmed A. Abd El-Latif, Sajad Jafari, Karthikeyan Rajagopal, Fahimeh Nazarimehr, and Bassem Abd-El-Atty. 2022. "Multimedia Cryptosystem for IoT Applications Based on a Novel Chaotic System around a Predefined Manifold" Sensors 22, no. 1: 334. https://doi.org/10.3390/s22010334
APA StyleLi, L., Abd El-Latif, A. A., Jafari, S., Rajagopal, K., Nazarimehr, F., & Abd-El-Atty, B. (2022). Multimedia Cryptosystem for IoT Applications Based on a Novel Chaotic System around a Predefined Manifold. Sensors, 22(1), 334. https://doi.org/10.3390/s22010334