A Novel Chaotic System with a Line Equilibrium: Analysis and Its Applications to Secure Communication and Random Bit Generation †
<p>Phase portraits of system (<a href="#FD1-telecom-01-00019" class="html-disp-formula">1</a>), for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.65</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </semantics></math>, for 1500 s.</p> "> Figure 2
<p>3D chaotic attractor of system (<a href="#FD1-telecom-01-00019" class="html-disp-formula">1</a>), for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.65</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </semantics></math>, for 1500 s.</p> "> Figure 3
<p>State trajectories of system (<a href="#FD1-telecom-01-00019" class="html-disp-formula">1</a>), for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.65</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </semantics></math>, for 1500 s.</p> "> Figure 4
<p>Phase portraits of system (<a href="#FD1-telecom-01-00019" class="html-disp-formula">1</a>) for each state versus its derivative, for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.65</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </semantics></math>, for 1500 s.</p> "> Figure 5
<p>Bifurcation diagram of <span class="html-italic">x</span> versus <span class="html-italic">a</span> for <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Bifurcation diagram of <span class="html-italic">z</span> versus <span class="html-italic">a</span> for <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Poincaré map of <span class="html-italic">x</span> versus <span class="html-italic">z</span> for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.65</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Diagram of the two largest Lyapunov exponents with respect to parameter <span class="html-italic">a</span>, for <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>SCSK secure communications design.</p> "> Figure 10
<p>Simulation results of the SCSK secure communications design, for chaotic signal <math display="inline"><semantics> <mrow> <mn>100</mn> <mo>·</mo> <mi>x</mi> </mrow> </semantics></math>.</p> "> Figure 11
<p>Simulation results of the SCSK secure communications design, for chaotic signal <math display="inline"><semantics> <mrow> <mn>100</mn> <mo>·</mo> <mo form="prefix">sin</mo> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 12
<p>Simulation results of the SCSK secure communications design, for chaotic signal <math display="inline"><semantics> <mrow> <mn>100</mn> <mo>·</mo> <mo form="prefix">sin</mo> <mn>3</mn> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 13
<p>Simulation results of the SCSK secure communications design, for chaotic signal <math display="inline"><semantics> <mrow> <mn>100</mn> <mo>·</mo> <mo form="prefix">sin</mo> <mn>5</mn> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 14
<p>BER simulation results.</p> "> Figure 15
<p>Autocorrelation and cross-correlation for a bit sequence of length <math display="inline"><semantics> <msup> <mn>10</mn> <mn>4</mn> </msup> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. The Proposed Chaotic System
3. Application to Secure Communications
3.1. Symmetric Chaos Shift Keying Modulation
3.2. Bit Error Rate Performance
4. Application to Random Bit Generation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Guan, Z.H.; Huang, F.; Guan, W. Chaos-based image encryption algorithm. Phys. Lett. A 2005, 346, 153–157. [Google Scholar] [CrossRef]
- Karmakar, J.; Nandi, D.; Mandal, M. A novel hyper-chaotic image encryption with sparse-representation based compression. Multimed. Tools Appl. 2020, 79, 28277–28300. [Google Scholar] [CrossRef]
- Jithin, K.; Sankar, S. Colour image encryption algorithm combining Arnold map, DNA sequence operation, and a Mandelbrot set. J. Inf. Secur. Appl. 2020, 50, 102428. [Google Scholar] [CrossRef]
- Zaher, A.A.; Abu-Rezq, A. On the design of chaos-based secure communication systems. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 3721–3737. [Google Scholar] [CrossRef]
- Dedieu, H.; Kennedy, M.P.; Hasler, M. Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 1993, 40, 634–642. [Google Scholar] [CrossRef]
- Rajagopal, K.; Cicek, S.; Akgul, A.; Jafari, S.; Karthikeyan, A. Chaotic cuttlesh: King of camouage with self-excited and hidden flows, its fractional-order form and communication designs with fractional form. Discret. Contin. Dyn. Syst.-B 2019, 25, 1001. [Google Scholar] [CrossRef] [Green Version]
- Stavroulakis, P. Chaos Applications in Telecommunications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Souza, C.E.; Chaves, D.P.; Pimentel, C. Digital communication systems based on three-dimensional chaotic attractors. IEEE Access 2019, 7, 10523–10532. [Google Scholar] [CrossRef]
- Patidar, V.; Sud, K.K.; Pareek, N.K. A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 2009, 33, 441–452. [Google Scholar]
- Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Phys. Today 2015, 68, 54. [Google Scholar]
- Hassan, S.S.; Reddy, M.P.; Rout, R.K. Dynamics of the modified n-degree Lorenz system. Appl. Math. Nonlinear Sci. 2019, 4, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, M. A hyperchaos generated from Lorenz system. Phys. A Stat. Mech. Its Appl. 2008, 387, 3751–3758. [Google Scholar] [CrossRef]
- Han, C. An image encryption algorithm based on modified logistic chaotic map. Optik 2019, 181, 779–785. [Google Scholar] [CrossRef]
- Xiong, L.; Zhang, S.; Zeng, Y.; Liu, B. Dynamics of a new composite four–Scroll chaotic system. Chin. J. Phys. 2018, 56, 2381–2394. [Google Scholar] [CrossRef]
- Wang, Z.; Volos, C.; Kingni, S.T.; Azar, A.T.; Pham, V.T. Four-wing attractors in a novel chaotic system with hyperbolic sine nonlinearity. Optik 2017, 131, 1071–1078. [Google Scholar] [CrossRef]
- Pham, V.T.; Vaidyanathan, S.; Volos, C.; Jafari, S. Hidden attractors in a chaotic system with an exponential nonlinear term. Eur. Phys. J. Spec. Top. 2015, 224, 1507–1517. [Google Scholar] [CrossRef]
- Pham, V.T.; Volos, C.; Kingni, S.T.; Kapitaniak, T.; Jafari, S. Bistable hidden attractors in a novel chaotic system with hyperbolic sine equilibrium. Circuits Syst. Signal Process. 2018, 37, 1028–1043. [Google Scholar] [CrossRef]
- Dalkiran, F.Y.; Sprott, J.C. Simple chaotic hyperjerk system. Int. J. Bifurc. Chaos 2016, 26, 1650189. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Yang, C.; Xu, D.; Chen, C. Dynamic analysis and synchronisation control of a novel chaotic system with coexisting attractors. Pramana 2020, 94, 19. [Google Scholar] [CrossRef]
- Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.V.; Leonov, G.A.; Prasad, A. Hidden attractors in dynamical systems. Phys. Rep. 2016, 637, 1–50. [Google Scholar] [CrossRef]
- Pham, V.T.; Volos, C.; Jafari, S.; Kapitaniak, T. A novel cubic–equilibrium chaotic system with coexisting hidden attractors: Analysis, and circuit implementation. J. Circuits Syst. Comput. 2018, 27, 1850066. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J. Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 2013, 57, 79–84. [Google Scholar] [CrossRef]
- Gotthans, T.; Sprott, J.C.; Petrzela, J. Simple chaotic flow with circle and square equilibrium. Int. J. Bifurc. Chaos 2016, 26, 1650137. [Google Scholar] [CrossRef]
- Azar, A.T.; Serrano, F.E. Stabilization of port Hamiltonian chaotic systems with hidden attractors by adaptive terminal sliding mode control. Entropy 2020, 22, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nag Chowdhury, S.; Ghosh, D. Hidden attractors: A new chaotic system without equilibria. Eur. Phys. J. Spec. Top. 2020, 229, 1299–1308. [Google Scholar] [CrossRef]
- Sushchik, M.; Tsimring, L.S.; Volkovskii, A.R. Performance analysis of correlation-based communication schemes utilizing chaos. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 1684–1691. [Google Scholar] [CrossRef]
- Wang, X.; Akgul, A.; Cicek, S.; Pham, V.T.; Hoang, D.V. A chaotic system with two stable equilibrium points: Dynamics, circuit realization and communication application. Int. J. Bifurc. Chaos 2017, 27, 1750130. [Google Scholar] [CrossRef]
- Moysis, L.; Volos, C.; Stouboulos, I.; Goudos, S.; Ciçek, S.; Pham, V.T.; Mishra, V.K. A Novel Chaotic System with Application to Secure Communications. In Proceedings of the 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 7–9 September 2020; pp. 1–4. [Google Scholar]
- Leonov, G.A.; Kuznetsov, N.V. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 2013, 23, 1330002. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.P.; Roy, B. Coexistence of asymmetric hidden chaotic attractors in a new simple 4-D chaotic system with curve of equilibria. Optik 2017, 145, 209–217. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Çiçek, S.; Kocamaz, U.E.; Uyaroğlu, Y. Secure communication with a chaotic system owning logic element. AEU-Int. J. Electron. Commun. 2018, 88, 52–62. [Google Scholar] [CrossRef]
- Çiçek, S.; Ferikoğlu, A.; Pehlivan, I. A new 3D chaotic system: Dynamical analysis, electronic circuit design, active control synchronization and chaotic masking communication application. Optik 2016, 127, 4024–4030. [Google Scholar] [CrossRef]
- Kocamaz, U.E.; Çiçek, S.; Uyaroğlu, Y. Secure communication with chaos and electronic circuit design using passivity-based synchronization. J. Circuits, Syst. Comput. 2018, 27, 1850057. [Google Scholar] [CrossRef]
- Pone, J.R.M.; Çiçek, S.; Kingni, S.T.; Tiedeu, A.; Kom, M. Passive–active integrators chaotic oscillator with anti-parallel diodes: Analysis and its chaos-based encryption application to protect electrocardiogram signals. Analog. Integr. Circuits Signal Process. 2019, 1–15. [Google Scholar] [CrossRef]
- Kingni, S.T.; Rajagopal, K.; Çiçek, S.; Srinivasan, A.; Karthikeyan, A. Dynamic analysis, FPGA implementation, and cryptographic application of an autonomous 5D chaotic system with offset boosting. Front. Inf. Technol. Electron. Eng. 2020, 21, 950–961. [Google Scholar] [CrossRef]
- Rajagopal, K.; Çiçek, S.; Khalaf, A.J.M.; Pham, V.T.; Jafari, S.; Karthikeyan, A.; Duraisamy, P. A novel class of chaotic flows with infinite equilibriums and their application in chaos-based communication design using DCSK. Z. Für Naturforschung A 2018, 73, 609–617. [Google Scholar] [CrossRef]
- Rajagopal, K.; Pham, V.T.; Çiçek, S.; Jafari, S.; Karthikeyan, A.; Arun, S. A chaotic jerk system with different types of Equilibria and its application in communication system. Teh. Vjesn. 2020, 27, 681–686. [Google Scholar]
- Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Liu, L.; Li, X.; Yu, M.; Wu, Z. A New Pseudorandom Bit Generator Based on Mixing Three-Dimensional Chen Chaotic System with a Chaotic Tactics. Complexity 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Liu, L.; Ding, N. Pseudorandom sequence generator based on the Chen chaotic system. Comput. Phys. Commun. 2013, 184, 765–768. [Google Scholar] [CrossRef]
- Tuna, M. A novel secure chaos-based pseudo random number generator based on ANN-based chaotic and ring oscillator: Design and its FPGA implementation. Analog Integr. Circuits Signal Process. 2020, 105, 167–181. [Google Scholar] [CrossRef]
- Moysis, L.; Volos, C.; Jafari, S.; Munoz-Pacheco, J.M.; Kengne, J.; Rajagopal, K.; Stouboulos, I. Modification of the Logistic Map Using Fuzzy Numbers with Application to Pseudorandom Number Generation and Image Encryption. Entropy 2020, 22, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demir, K.; Ergün, S. An analysis of deterministic chaos as an entropy source for random number generators. Entropy 2018, 20, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Gao, C.; Liu, J.; Dong, S. A self-perturbed pseudo-random sequence generator based on hyperchaos. Chaos Solitons Fractals X 2019, 4, 100023. [Google Scholar] [CrossRef]
- Datcu, O.; Macovei, C.; Hobincu, R. Chaos Based Cryptographic Pseudo-Random Number Generator Template with Dynamic State Change. Appl. Sci. 2020, 10, 451. [Google Scholar] [CrossRef] [Green Version]
- Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Technical Report; Booz-Allen and Hamilton Inc.: Mclean, VA, USA, 2001. [Google Scholar]
- Lynnyk, V.; Sakamoto, N.; Čelikovskỳ, S. Pseudo random number generator based on the generalized Lorenz chaotic system. IFAC-PapersOnLine 2015, 48, 257–261. [Google Scholar] [CrossRef]
- Hamza, R. A novel pseudo random sequence generator for image-cryptographic applications. J. Inf. Secur. Appl. 2017, 35, 119–127. [Google Scholar] [CrossRef]
- Moysis, L.; Tutueva, A.; Volos, C.; Butusov, D.; Munoz-Pacheco, J.M.; Nistazakis, H. A Two-Parameter Modified Logistic Map and Its Application to Random Bit Generation. Symmetry 2020, 12, 829. [Google Scholar] [CrossRef]
- Nazaré, T.E.; Nepomuceno, E.G.; Martins, S.A.; Butusov, D.N. A Note on the Reproducibility of Chaos Simulation. Entropy 2020, 22, 953. [Google Scholar] [CrossRef]
- Sayed, W.S.; Radwan, A.G.; Fahmy, H.A.; El-Sedeek, A. Software and Hardware Implementation Sensitivity of Chaotic Systems and Impact on Encryption Applications. Circuits Syst. Signal Process. 2020, 39, 5638–5655. [Google Scholar] [CrossRef]
- Liu, B.; Xiang, H.; Liu, L. Reducing the Dynamical Degradation of Digital Chaotic Maps with Time-Delay Linear Feedback and Parameter Perturbation. Math. Probl. Eng. 2020, 2020, 4926937. [Google Scholar] [CrossRef] [Green Version]
- Kaddoum, G. Wireless chaos-based communication systems: A comprehensive survey. IEEE Access 2016, 4, 2621–2648. [Google Scholar] [CrossRef]
If , the Test Is Successful | ||||
---|---|---|---|---|
No. | Statistical Test | p-Value | Proportion | Result |
1 | Frequency | 0.023545 | 50/50 | Success |
2 | Block Frequency | 0.191687 | 49/50 | Success |
3 | Cumulative Sums | 0.935716 | 49/50 | Success |
4 | Runs | 0.171867 | 49/50 | Success |
5 | Longest Run | 0.350485 | 49/50 | Success |
6 | Rank | 0.935716 | 49/50 | Success |
7 | FFT | 0.779188 | 50/50 | Success |
8 | Non-Overlapping Template | 0.319084 | 50/50 | Success |
9 | Overlapping Template | 0.137282 | 48/50 | Success |
10 | Universal | 0.191687 | 50/50 | Success |
11 | Approximate Entropy | 0.085587 | 50/50 | Success |
12 | Random Excursions | 0.010606 | 29/29 | Success |
13 | Random Excursions Variant | 0.186566 | 29/29 | Success |
14 | Serial | 0.574903 | 50/50 | Success |
15 | Linear Complexity | 0.262249 | 50/50 | Success |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moysis, L.; Volos, C.; Stouboulos, I.; Goudos, S.; Çiçek, S.; Pham, V.-T.; Mishra, V.K. A Novel Chaotic System with a Line Equilibrium: Analysis and Its Applications to Secure Communication and Random Bit Generation. Telecom 2020, 1, 283-296. https://doi.org/10.3390/telecom1030019
Moysis L, Volos C, Stouboulos I, Goudos S, Çiçek S, Pham V-T, Mishra VK. A Novel Chaotic System with a Line Equilibrium: Analysis and Its Applications to Secure Communication and Random Bit Generation. Telecom. 2020; 1(3):283-296. https://doi.org/10.3390/telecom1030019
Chicago/Turabian StyleMoysis, Lazaros, Christos Volos, Ioannis Stouboulos, Sotirios Goudos, Serdar Çiçek, Viet-Thanh Pham, and Vikas K. Mishra. 2020. "A Novel Chaotic System with a Line Equilibrium: Analysis and Its Applications to Secure Communication and Random Bit Generation" Telecom 1, no. 3: 283-296. https://doi.org/10.3390/telecom1030019
APA StyleMoysis, L., Volos, C., Stouboulos, I., Goudos, S., Çiçek, S., Pham, V. -T., & Mishra, V. K. (2020). A Novel Chaotic System with a Line Equilibrium: Analysis and Its Applications to Secure Communication and Random Bit Generation. Telecom, 1(3), 283-296. https://doi.org/10.3390/telecom1030019