Calibration-Free Single-Anchor Indoor Localization Using an ESPAR Antenna
<p>Electronically steerable parasitic array radiator (ESPAR) antenna design.</p> "> Figure 2
<p>Simulated ESPAR antenna radiation pattern gain (in dBi) at 2.484 GHz for the steering vector <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mn>111110000000</mn> </mrow> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>ESPAR antenna: (<b>a</b>) top view; (<b>b</b>) bottom view.</p> "> Figure 3 Cont.
<p>ESPAR antenna: (<b>a</b>) top view; (<b>b</b>) bottom view.</p> "> Figure 4
<p>Proposed calibration-free algorithm overview. The position of localized node <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> (marked as a yellow dot) is calculated using 3 reference nodes (<span class="html-italic">K</span> = 3, marked in red), for which the associated Euclidean distances <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mrow> <mi>j</mi> <mo>=</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msub> <mo><</mo> <msub> <mi>D</mi> <mrow> <mi>j</mi> <mo>=</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </msub> <mo><</mo> <msub> <mi>D</mi> <mrow> <mi>j</mi> <mo>=</mo> <msub> <mi>k</mi> <mn>8</mn> </msub> </mrow> </msub> </mrow> </semantics></math> calculated in the first phase of the estimation are the smallest (see text for explanations).</p> "> Figure 5
<p>Activity diagram for the proposed calibration-free indoor positioning method (see text for explanations).</p> "> Figure 6
<p>The ESPAR antenna connected to the custom-made nRF52840 wireless sensor network (WSN) board via Arduino Shield header pins. The WSN board’s radio frequency (RF) signal output is connected to the ESPAR antenna’s center element via a black SMA cable.</p> "> Figure 7
<p>Test environment with reference nodes installed on the walls and the ESPAR antenna integrated with the custom-made WSN board in a single housing mounted on the ceiling.</p> "> Figure 8
<p>The ESPAR antenna integrated together with the custom-made WSN board installed within a custom-made housing and mounted on the ceiling.</p> "> Figure 9
<p>A 3D plan of the test environment, with the test positions marked as white squares and the reference nodes as blue, green, and red squares (see explanations in text).</p> "> Figure 10
<p>Received signal strength from a single reference module with respect to ESPAR antenna configurations. Error bars represent the maximal received signal strength (RSS) deviation within 100 measurement packets. The standard deviation for RSS values <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.316</mn> <mo> </mo> <mi>dB</mi> </mrow> </semantics></math>.</p> "> Figure 11
<p>Root mean square error (RMSE) for different numbers of modules of the lowest Euclidean distance considered for the second phase of the proposed localization algorithm.</p> "> Figure 12
<p>Estimation error (m) calculated for each test point.</p> "> Figure 13
<p>Localization errors in the form of a cumulative distribution function.</p> ">
Abstract
:1. Introduction
2. Related Work
3. ESPAR Antenna for Single-Anchor Localization
4. Proposed Calibration-Free Algorithm
5. Test Environment
6. Measurement Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kolomijeca, A.; Lopez-Salcedo, J.A.; Lohan, E.-S.; Seco-Granados, G. GNSS Applications: Personal Safety Concerns. In Proceedings of the 2016 International Conference on Localization and GNSS (ICL-GNSS), Barcelona, Spain, 28–30 June 2016; pp. 1–5. [Google Scholar]
- Zhu, N.; Marais, J.; Betaille, D.; Berbineau, M. GNSS Position Integrity in Urban Environments: A Review of Literature. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2762–2778. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, M.; Fujii, M.; Ito, A.; Watanabe, Y.; Hatano, H. A Study on Indoor Position Estimation Based on Fingerprinting Using GPS Signals. In Proceedings of the 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Korea, 27–30 October 2014; pp. 727–728. [Google Scholar]
- Matz, C.J.; Stieb, D.M.; Brion, O. Urban-Rural Differences in Daily Time-Activity Patterns, Occupational Activity and Housing Characteristics. Environ. Health 2015, 14, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavrou, V.; Bardaki, C.; Papakyriakopoulos, D.; Pramatari, K. An Ensemble Filter for Indoor Positioning in a Retail Store Using Bluetooth Low Energy Beacons. Sensors 2019, 19, 4550. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Qin, N.; Xue, Y.; Yang, L. Received Signal Strength-Based Indoor Localization Using Hierarchical Classification. Sensors 2020, 20, 1067. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Liu, M.; Zhang, Y.; Shen, W. A Two-Level WiFi Fingerprint-Based Indoor Localization Method for Dangerous Area Monitoring. Sensors 2019, 19, 4243. [Google Scholar] [CrossRef] [Green Version]
- Kwak, M.; Hamm, C.; Park, S.; Kwon, T.T. Magnetic Field Based Indoor Localization System: A Crowdsourcing Approach. In Proceedings of the 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8. [Google Scholar]
- Zhang, C. Sparse Visual Localization in GPS-Denied Indoor Environments. In Proceedings of the 2019 International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 20–22 December 2019; pp. 87–91. [Google Scholar]
- Vy, T.D.; Nguyen, T.L.N.; Shin, Y. Inertial Sensor-Based Indoor Pedestrian Localization for IPhones. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 16–18 October 2019; pp. 200–203. [Google Scholar]
- Ren, A.; Zhou, F.; Rahman, A.; Wang, X.; Zhao, N.; Yang, X. A Study of Indoor Positioning Based on UWB Base-Station Configurations. In Proceedings of the 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 25–26 March 2017; pp. 1939–1943. [Google Scholar]
- Luo, R.C.; Hsiao, T.-J. Indoor Localization System Based on Hybrid Wi-Fi/BLE and Hierarchical Topological Fingerprinting Approach. IEEE Trans. Veh. Technol. 2019, 68, 10791–10806. [Google Scholar] [CrossRef]
- Tlili, F.; Hamdi, N.; Belghith, A. Accurate 3D Localization Scheme Based on Active RFID Tags for Indoor Environment. In Proceedings of the 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), Nice, France, 5–7 November 2012; pp. 378–382. [Google Scholar]
- Ozdenizci, B.; Ok, K.; Coskun, V.; Aydin, M.N. Development of an Indoor Navigation System Using NFC Technology. In Proceedings of the 2011 Fourth International Conference on Information and Computing, Phuket, Thailand, 25–27 April 2011; pp. 11–14. [Google Scholar]
- Yang, Z.; Zhou, Z.; Liu, Y. From RSSI to CSI: Indoor Localization via Channel Response. ACM Comput. Surv. 2013, 46, 1–32. [Google Scholar] [CrossRef]
- Poulose, A.; Eyobu, O.S.; Han, D.S. An Indoor Position-Estimation Algorithm Using Smartphone IMU Sensor Data. IEEE Access 2019, 7, 11165–11177. [Google Scholar] [CrossRef]
- Le, A.T.; Tran, L.C.; Huang, X.; Ritz, C.; Dutkiewicz, E.; Phung, S.L.; Bouzerdoum, A.; Franklin, D. Unbalanced Hybrid AOA/RSSI Localization for Simplified Wireless Sensor Networks. Sensors 2020, 20, 3838. [Google Scholar] [CrossRef] [PubMed]
- Kaemarungsi, K.; Krishnamurthy, P. Properties of Indoor Received Signal Strength for WLAN Location Fingerprinting. In Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004, Boston, MA, USA, 26 August 2004; pp. 14–23. [Google Scholar]
- Li, X.; Zhu, J. Improved Indoor Positioning Method Based on CSI. In Proceedings of the 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha, China, 12–13 January 2019; pp. 274–277. [Google Scholar]
- Qiang, C.; Van de Velde, S.; Steendam, H. How to Get the Best out of Your Fingerprint Database: Hierarchical Fingerprint Indoor Positioning for Databases with Variable Density. IEEE Access 2019, 1. [Google Scholar] [CrossRef]
- Chu, C.; Yang, S. A Particle Filter Based Reference Fingerprinting Map Recalibration Method. IEEE Access 2019, 7, 111813–111827. [Google Scholar] [CrossRef]
- Fet, N.; Handte, M.; Marron, P.J. An Approach for Autonomous Recalibration of Fingerprinting-Based Indoor Localization Systems. In Proceedings of the 2016 12th International Conference on Intelligent Environments (IE), London, UK, 14–16 September 2016; pp. 24–31. [Google Scholar]
- Lee, S.; Husen, M.N. Recalibration-Free Indoor Localization with Wi-Fi Fingerprinting of Invariant Received Signal Strength. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4649–4655. [Google Scholar]
- Machaj, J.; Brida, P. Impact of Wi-Fi Access Points on Performance of RBF Localization Algorithm. In Proceedings of the 2012 ELEKTRO, Rajeck Teplice, Slovakia, 21–22 May 2012; pp. 70–74. [Google Scholar]
- Maddio, S.; Cidronali, A.; Manes, G. Direction of Arrival Estimation of an Arbitrary Oriented Targets by a Highly Directive Antenna and Coarse RSSI Data. In Proceedings of the 2012 42nd European Microwave Conference, Amsterdam, The Netherlands, 29 October–1 November 2012; pp. 140–143. [Google Scholar]
- Rzymowski, M.; Woznica, P.; Kulas, L. Single-Anchor Indoor Localization Using ESPAR Antenna. Antennas Wirel. Propag. Lett. 2016, 15, 1183–1186. [Google Scholar] [CrossRef]
- Giorgetti, G.; Cidronali, A.; Gupta, S.; Manes, G. Single-Anchor Indoor Localization Using a Switched-Beam Antenna. IEEE Commun. Lett. 2009, 13, 58–60. [Google Scholar] [CrossRef] [Green Version]
- Soewito, B.; Hassyr, F.A.; Geri Arisandi, T.G. A Systematic Literature Review of Indoor Position System Accuracy and Implementation. In Proceedings of the 2018 International Conference on Applied Science and Technology (iCAST), Manado, Indonesia, 26–27 October 2018; pp. 358–362. [Google Scholar]
- Pakanon, N.; Chamchoy, M.; Supanakoon, P. Study on Accuracy of Trilateration Method for Indoor Positioning with BLE Beacons. In Proceedings of the 2020 6th International Conference on Engineering, Applied Sciences and Technology (ICEAST), Chiang Mai, Thailand, 1–4 July 2020; pp. 1–4. [Google Scholar]
- Deng, B.; Huang, G.; Zhang, L.; Liu, H. Improved Centroid Localization Algorithm in WSNs. In Proceedings of the 2008 3rd International Conference on Intelligent System and Knowledge Engineering, Xiamen, China, 17–19 November 2008; pp. 1260–1264. [Google Scholar]
- Kaemarungsi, K. Efficient Design of Indoor Positioning Systems Based on Location Fingerprinting. In Proceedings of the 2005 International Conference on Wireless Networks, Communications and Mobile Computing, Maui, HI, USA, 13–16 June 2005; Volume 1, pp. 181–186. [Google Scholar]
- Gorski, K.; Groth, M.; Kulas, L. A Multi-Building WiFi-Based Indoor Positioning System. In Proceedings of the 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON), Gdansk, Poland, 16–18 June 2014; pp. 1–4. [Google Scholar]
- Win, M.Z.; Scholtz, R.A. On the Robustness of Ultra-Wide Bandwidth Signals in Dense Multipath Environments. IEEE Commun. Lett. 1998, 2, 51–53. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Xia, W.; Shen, L. A Single-Anchor Calibration Indoor Positioning System Using Heterogeneous Sensors. In Proceedings of the 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–5. [Google Scholar]
- Ye, F.; Chen, R.; Guo, G.; Peng, X.; Liu, Z.; Huang, L. A Low-Cost Single-Anchor Solution for Indoor Positioning Using BLE and Inertial Sensor Data. IEEE Access 2019, 7, 162439–162453. [Google Scholar] [CrossRef]
- Jespersen, M.H.; Serup, D.E.; Nielsen, M.H.; Hannesbo, M.H.; Williams, R.J.; Nielsen, K.S.; Mikkelsen, J.H.; Shen, M. An Indoor Multipath-Assisted Single-Anchor UWB Localization Method. In Proceedings of the 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, 6–10 May 2018; pp. 1–3. [Google Scholar]
- Rath, M.; Kulmer, J.; Leitinger, E.; Witrisal, K. Single-Anchor Positioning: Multipath Processing With Non-Coherent Directional Measurements. IEEE Access 2020, 8, 88115–88132. [Google Scholar] [CrossRef]
- Groth, M.; Rzymowski, M.; Nyka, K.; Kulas, L. ESPAR Antenna-Based WSN Node With DoA Estimation Capability. IEEE Access 2020, 8, 91435–91447. [Google Scholar] [CrossRef]
- Ali, M.; Hur, S.; Park, Y. Wi-Fi-Based Effortless Indoor Positioning System Using IoT Sensors. Sensors 2019, 19, 1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; Tong, X.; Peng, Y.; Tian, X. Calibration-Free Localization Based on Fingerprinting of Channel State Information. In Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 6–9 December 2019; pp. 394–398. [Google Scholar]
- Van Kleunen, W.A.P.; Viet-Duc, L.; Havinga, P.J.M. Calibration-Free Signal-Strength Localization Using Product-Moment Correlation. In Proceedings of the 2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Brasilia, Brazil, 10–13 October 2016; pp. 210–218. [Google Scholar]
- Patwari, N.; O’Dea, R.J.; Yanwei, W. Relative Location in Wireless Networks. In Proceedings of the IEEE VTS 53rd Vehicular Technology Conference, Spring 2001, Proceedings (Cat. No.01CH37202). Rhodes, Greece, 6–9 May 2001; Volume 2, pp. 1149–1153. [Google Scholar]
- Elbakly, R.; Youssef, M. A Robust Zero-Calibration RF-Based Localization System for Realistic Environments. In Proceedings of the 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), London, UK, 27–30 June 2016; pp. 1–9. [Google Scholar]
- Harrington, R. Reactively Controlled Directive Arrays. IEEE Trans. Antennas Propagat. 1978, 26, 390–395. [Google Scholar] [CrossRef]
- Kulas, L. Direction-of-Arrival Estimation Using an ESPAR Antenna with Simplified Beam Steering. In Proceedings of the 47th European Microwave Conference, Nuremberg, Germany, 10–12 October 2017; pp. 1–4. [Google Scholar]
- Taillefer, E.; Hirata, A.; Ohira, T. Direction-of-Arrival Estimation Using Radiation Power Pattern with an ESPAR Antenna. IEEE Trans. Antennas Propagat. 2005, 53, 678–684. [Google Scholar] [CrossRef]
- Kulas, L. RSS-Based DoA Estimation Using ESPAR Antennas and Interpolated Radiation Patterns. Antennas Wirel. Propag. Lett. 2018, 17, 25–28. [Google Scholar] [CrossRef]
- Abdulkarim, H.D.; Sarhang, H. Normalizing RSS Values of Wi-Fi Access Points to Improve an Integrated Indoors Smartphone Positioning Solutions. In Proceedings of the 2019 International Engineering Conference (IEC), Erbil, Iraq, 23–25 June 2019; pp. 171–176. [Google Scholar]
1 | 90 | 111110000000 |
2 | 120 | 011111000000 |
3 | 150 | 001111100000 |
4 | 180 | 000111110000 |
5 | 210 | 000011111000 |
6 | 240 | 000001111100 |
7 | 270 | 000000111110 |
8 | 300 | 000000011111 |
9 | 330 | 100000001111 |
10 | 0 | 110000000111 |
11 | 30 | 111000000011 |
12 | 60 | 111100000001 |
K | Max. Error (m) | Mean Error (m) | RMSE (m) |
---|---|---|---|
3 | 5.36 | 2.16 | 2.40 |
4 | 4.51 | 1.87 | 2.10 |
5 | 3.93 | 1.67 | 1.94 |
8 | 3.95 | 1.54 | 1.78 |
K | Reference Modules Configuration | Max. Error (m) | Mean Error (m) | RMSE (m) |
---|---|---|---|---|
2 | corners (4 modules) | 4.89 | 2.22 | 2.46 |
middle (4 modules) | 4.89 | 2.02 | 2.24 | |
corners and middle (8 modules) | 5.52 | 2.19 | 2.49 | |
all (24 modules) | 5.42 | 2.29 | 2.54 | |
3 | corners (4 modules) | 4.09 | 1.82 | 2.05 |
middle (4 modules) | 3.68 | 1.97 | 2.14 | |
corners and middle (8 modules) | 3.97 | 1.98 | 2.18 | |
all (24 modules) | 5.36 | 2.16 | 2.40 | |
4 | corners (4 modules) | 3.98 | 1.72 | 1.85 |
middle (4 modules) | 3.85 | 1.74 | 1.86 | |
corners and middle (8 modules) | 4.64 | 1.88 | 2.14 | |
all (24 modules) | 4.51 | 1.87 | 2.10 |
K | Reference Modules Configuration | Max. Error (m) | Mean Error (m) | RMSE (m) |
---|---|---|---|---|
2 | corners (4 modules) | 5.04 | 2.42 | 2.62 |
middle (4 modules) | 4.06 | 1.63 | 1.87 | |
corners and middle (8 modules) | 5.09 | 2.36 | 2.59 | |
all (24 modules) | 4.21 | 2.18 | 2.38 | |
3 | corners (4 modules) | 3.95 | 1.63 | 1.82 |
middle (4 modules) | 3.58 | 1.39 | 1.58 | |
corners and middle (8 modules) | 3.52 | 1.84 | 2.04 | |
all (24 modules) | 3.90 | 1.99 | 2.18 | |
4 | corners (4 modules) | 3.58 | 1.68 | 1.82 |
middle (4 modules) | 4.13 | 1.63 | 1.76 | |
corners and middle (8 modules) | 3.93 | 1.55 | 1.77 | |
all (24 modules) | 3.84 | 1.86 | 2.04 |
Positioning Method | Mean Error (m) | Calibration Needed |
---|---|---|
Calibration-free single-anchor | 1.39 | NO |
Single-anchor fingerprinting [26] | 1.61 | YES |
Single-anchor DoA [27] | 1.69 | YES |
Number of Packets | 50 | 30 | 20 | 10 | 5 | 2 |
---|---|---|---|---|---|---|
Number of estimations for each test point | 2 | 3 | 5 | 10 | 20 | 50 |
Approximated time difference between the first and last estimation [min] | 10 | 12 | 16 | 18 | 19 | 19.6 |
Maximal difference of mean estimation error when compared to full dataset [m] | 0 | 0.01 | 0.01 | 0.01 | 0.03 | 0.07 |
Standard deviation of mean error [m] | 0.0001 | 0.0004 | 0.001 | 0.002 | 0.008 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groth, M.; Nyka, K.; Kulas, L. Calibration-Free Single-Anchor Indoor Localization Using an ESPAR Antenna. Sensors 2021, 21, 3431. https://doi.org/10.3390/s21103431
Groth M, Nyka K, Kulas L. Calibration-Free Single-Anchor Indoor Localization Using an ESPAR Antenna. Sensors. 2021; 21(10):3431. https://doi.org/10.3390/s21103431
Chicago/Turabian StyleGroth, Mateusz, Krzysztof Nyka, and Lukasz Kulas. 2021. "Calibration-Free Single-Anchor Indoor Localization Using an ESPAR Antenna" Sensors 21, no. 10: 3431. https://doi.org/10.3390/s21103431
APA StyleGroth, M., Nyka, K., & Kulas, L. (2021). Calibration-Free Single-Anchor Indoor Localization Using an ESPAR Antenna. Sensors, 21(10), 3431. https://doi.org/10.3390/s21103431