Sensor Information Sharing Using a Producer-Consumer Algorithm on Small Vehicles
<p>Comparison of software-oriented architecture (<b>left-side</b>) and proposed architecture (<b>right-side</b>).</p> "> Figure 2
<p>Ground vehicle model.</p> "> Figure 3
<p>Nano-quadcopter. (<b>a</b>) Body frame. (<b>b</b>) Inertial frame.</p> "> Figure 4
<p>Different configurations of the absolute positioning system mounted within a workspace: (<b>a</b>) existence of only one tag: a location algorithm based on “two way ranging” TWR is used. (<b>b</b>)Two or more tags are present: a location algorithm based on “time difference of arrival” TDoA is used.</p> "> Figure 5
<p>Flowchart of the producer–consumer problem.</p> "> Figure 6
<p>Diagram of the characterization experiment. (<b>a</b>) In 2D. (<b>b</b>) In 3D.</p> "> Figure 7
<p>Flowchart of the process A (producer) implemented for the mobile robot EV3 and of the process B (consumer) implemented for the Crazyflie quadcopter.</p> "> Figure 8
<p>Block diagram illustrating the interaction between the components during the execution of the algorithm.</p> "> Figure 9
<p>Performance of anchors in rectangular (green) and square (pink) configuration concerning a reference path.</p> "> Figure 10
<p>Results of the characterization run for a 2 × 2 m workspace. (<b>a</b>) Trajectory performed by the robot. (<b>b</b>) <span class="html-italic">x</span>-axis component of the movement. (<b>c</b>) <span class="html-italic">y</span>-axis component of the movement. (<b>d</b>) Quadratic error on <span class="html-italic">x</span> and <span class="html-italic">y</span> between the performed path and the given ideal trajectory.</p> "> Figure 11
<p>The paths taken by the EV3 (blue line), and the Crazyflie quadcopter robot (red line) compared to the ideal path (black dashed line). (<b>a</b>) The trajectory performed in 3D perspective. (<b>b</b>) Displacement in <span class="html-italic">x</span>. (<b>c</b>) Displacement <span class="html-italic">y</span>. (<b>d</b>) Displacement in <span class="html-italic">z</span>.</p> "> Figure 12
<p>RMS-positioning-error between the EV3 robot and the Crazyflie quadcopter. (<b>a</b>) <span class="html-italic">x</span>-axis error. (<b>b</b>) <span class="html-italic">y</span>-axis error.</p> "> Figure 13
<p>Buffer size vs. (<b>a</b>) consumption data rate and (<b>b</b>) kinetic energy and execution time comparison as a system’s performance evaluation.</p> "> Figure 14
<p>Different tests made using buffer sizes from 0 to 14.</p> ">
Abstract
:1. Introduction
1.1. Contribution
- Enable incompatible hardware with high-level architectures.
- Manage information packets between embedded systems.
- Achieve an interception task among vehicles avoiding the use of additional hardware or complex infrastructure.
- Make compatible an architecture that uses operating systems with one that does not.
- Adapt to the confinement conditions when performing experiments at home.
- The small vehicle platform allows test different autonomous navigation strategies, lowering the risk and cost of large-scale testing.
1.2. Organization
2. Background and Related Work
2.1. Robotic System Architectures
2.1.1. Localization Sensors
2.1.2. Communication Protocols
2.1.3. Applications
2.1.4. Cooperative Tasks
3. Customized Architecture for Small Vehicles
3.1. Small Vehicles Models
3.1.1. Ground Robot
3.1.2. Aerial Vehicle
3.2. Sensor Information Sharing
3.3. Producer-Consumer Algorithm
Algorithm 1 Producer algorithm |
|
Algorithm 2 Consumer algorithm |
|
4. Experiments, Results and Discussion
4.1. Experiments
4.1.1. Experiment 1: Characterization
4.1.2. Experiment 2: Intercepting and Landing Task
4.1.3. Experiment 3: Performance
4.2. Results and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koseglu, M.; Celik, O.M.; Pektas, O. Design of an autonomous mobile robot based on ROS. In Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Aung, T.; Min, H.Y.; Maw, A.H. CIMLA: Checkpoint Interval Message Logging Algorithm in Kafka Pipeline Architecture. In Proceedings of the 2020 International Conference on Advanced Information Technologies (ICAIT), Yangon, Myanmar, 4–5 November 2020; pp. 30–35. [Google Scholar] [CrossRef]
- Sanchez-Lopez, J.; Molina, M.; Bavle, H.; Sampedro, C.; Suárez Fernández, R.; Campoy, P. A Multi-Layered Component-Based Approach for the Development of Aerial Robotic Systems: The Aerostack Framework. J. Intell. Robot. Syst. Theory Appl. 2017, 88, 683–709. [Google Scholar] [CrossRef]
- Atoev, S.; Kwon, K.; Lee, S.; Moon, K. Data analysis of the MAVLink communication protocol. In Proceedings of the 2017 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2–4 November 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Evers, R.; Masters, P. The application of low-altitude near-infrared aerial photography for detecting clandestine burials using a UAV and low-cost unmodified digital camera. Forensic Sci. Int. 2018, 289, 408–418. [Google Scholar] [CrossRef] [Green Version]
- Zahran, S.; Masiero, A.; Mostafa, M.M.; Moussa, A.M.; Vettore, A.; El-Sheimy, N. Uavs enhanced navigation in outdoor gnss denied environment using uwb and monocular camera systems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Akçakoca, M.; Atıcı, B.; Gever, B.; Oğuz, S.; Demir, M.; Saldiran, E.; Yuksek, B.; Koyuncu, E.; Yeniceri, R.; Inalhan, G. A simulation-based development and verification architecture for micro uav teams and swarms. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar] [CrossRef]
- Dirir, A.; Elsayed, H. Object Tracking Framework for Unmanned Aerial Vehicles. In Proceedings of the 2019 IEEE Global Conference on Internet of Things (GCIoT), Dubai, United Arab Emirates, 4–7 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Lee, J.; Su, Y.; Shen, C. A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; pp. 46–51. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.F.; Honório, L.M.; Marcato, A.L.M.; Dantas, M.A.R.; Melo, A.G.; Capretz, M.; Urdiales, C. ARCog: An Aerial Robotics Cognitive Architecture. Robotica 2021, 39, 483–502. [Google Scholar] [CrossRef]
- Xu, C.; Wang, X.; Duan, S.; Wan, J. Spatial-temporal constrained particle filter for cooperative target tracking. J. Netw. Comput. Appl. 2021, 176. [Google Scholar] [CrossRef]
- Onyekpe, U.; Kanarachos, S.; Palade, V.; Christopoulos, S.R. Vehicular localisation at high and low estimation rates during gnssoutages: A deep learning approach. In Deep Learning Applications, Volume 2; Wani, M.A., Khoshgoftaar, T.M., Palade, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1232, pp. 229–248. [Google Scholar] [CrossRef]
- Brena, R.; García-Vázquez, J.; Galván-Tejada, C.; Muñoz-Rodriguez, D.; Vargas-Rosales, C.; Fangmeyer, J. Evolution of Indoor Positioning Technologies: A Survey. J. Sens. 2017, 2017. [Google Scholar] [CrossRef]
- Mohr, H. UAV Implementation of Distributed Robust Target Location in Unknown Environments. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Gargioni, G.; Peterson, M.; Persons, J.; Schroeder, K.; Black, J. A full distributed multipurpose autonomous flight system using 3D position tracking and ROS. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 1458–1466. [Google Scholar] [CrossRef]
- Yashin, G.; Trinitatova, D.; Agishev, R.; Ibrahimov, R.; Tsetserukou, D. AeroVr: Virtual reality-based teleoperation with tactile feedback for aerial manipulation. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil, 2–6 December 2019; pp. 767–772. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Pandurangaiah, J.; Blankenship, G.; Castro, C.; Guan, S.; Ju, A.; Zhu, Z. Evaluation of Virtual Reality Tracking Performance for Indoor Navigation. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020; pp. 1311–1316. [Google Scholar] [CrossRef]
- Shin, J.M.; Kim, Y.S.; Ban, T.W.; Choi, S.; Kang, K.M.; Ryu, J.Y. Position tracking techniques using multiple receivers for anti-drone systems. Sensors 2021, 21, 35. [Google Scholar] [CrossRef]
- Adjei, H.; Oduro-Gyimah, F.; Shunhua, T.; Agordzo, G.; Musariri, M. Developing a bluetooth based tracking system for tracking devices using arduino. In Proceedings of the 2020 5th International Conference on Computing, Communication and Security (ICCCS), Patna, India, 14–16 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Lie, K.; Yeo, K.; Ting, A.N.; Chieng, D.T. Indoor Tracking with Bluetooth Low Energy Devices Using K-Nearest Neighbour Algorithm. In Proceedings of the 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE), Shah Alam, Malaysia, 18–19 April 2020; pp. 155–159. [Google Scholar] [CrossRef]
- Shi, G.; Ming, Y. Survey of indoor positioning systems based on ultra-wideband (UWB) technology. Wirel. Commun. Netw. Appl. 2016, 348, 1269–1278. [Google Scholar] [CrossRef]
- Silvia, Z.; Martina, C.; Fabio, S.; Alessandro, P. Ultra Wide Band Indoor Positioning System: Analysis and testing of an IPS technology. IFAC-PapersOnLine 2018, 51, 1488–1492. [Google Scholar] [CrossRef]
- Lutz, P.; Schuster, M.; Steidle, F. Visual-inertial SLAM aided estimation of anchor poses and sensor error model parameters of UWB radio modules. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil, 2–6 December 2019; pp. 739–746. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Yang, C.; Li, R.; Knoll, A.; Beltrame, G. Accurate position tracking with a single UWB anchor. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2344–2350. [Google Scholar] [CrossRef]
- Gomaa, M.; Silva, O.D.; Mann, G.; Gosine, R.; Hengeveld, R. ROS Based Real-Time Motion Control for Robotic Visual Arts Exhibit Using Decawave Local Positioning System. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 653–658. [Google Scholar] [CrossRef]
- Ledergerber, A.; D’Andrea, R. Ultra-wideband range measurement model with Gaussian processes. In Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA), Maui, HI, USA, 27–30 August 2017; Volume 2017, pp. 1929–1934. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Goudar, A.; Panerati, J.; Schoellig, A.P. Learning-based Bias Correction for Ultra-wideband Localization of Resource-constrained Mobile Robots. arXiv 2020, arXiv:2003.09371. [Google Scholar]
- Pinto, M.F.; Honorio, L.M.; Melo, A.; Marcato, A.L.M. A Robotic Cognitive Architecture for Slope and Dam Inspections. Sensors 2020, 20, 4579. [Google Scholar] [CrossRef]
- Munro, A.; Clayton, G. Drone Swarms, Communications Performance and Big Data. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Silva, L.A.Z.d.; Vidal, V.F.; Honório, L.M.; Dantas, M.A.R.; Pinto, M.F.; Capretz, M. A Heterogeneous Edge-Fog Environment Supporting Digital Twins for Remote Inspections. Sensors 2020, 20, 5296. [Google Scholar] [CrossRef]
- Wallace, C.; Ackels, S.; Benavidez, P.; Jamshidi, M. Real-Time Distributed Ensemble Learning for Fault Detection of an Unmanned Ground Vehicle. In Proceedings of the 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), Budapest, Hungary, 2–4 June 2020; pp. 463–468. [Google Scholar] [CrossRef]
- Angel, M.; Abdulla, A.K.; David, M.; de la Escalera, A. 3D Trajectory Planning Method for UAVs Swarm in Building Emergencies. Sensors 2020, 20, 642. [Google Scholar] [CrossRef] [Green Version]
- Koubâa, A.; Qureshi, B.; Sriti, M.F.; Allouch, A.; Javed, Y.; Alajlan, M.; Cheikhrouhou, O.; Khalgui, M.; Tovar, E. Dronemap Planner: A service-oriented cloud-based management system for the Internet-of-Drones. Ad Hoc Netw. 2019, 86, 46–62. [Google Scholar] [CrossRef]
- Basso, M.; Zacarias, I.; Tussi Leite, C.E.; Wang, H.; Pignaton de Freitas, E. A Practical Deployment of a Communication Infrastructure to Support the Employment of Multiple Surveillance Drones Systems. Drones 2018, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Damacharla, P.; Mehta, D.; Javaid, A.Y.; Devabhaktuni, V.K. Study on State-of-the-art Cloud Services Integration Capabilities with Autonomous Ground Vehicles. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Salmeron-Garcia, J.J.; van den Dries, S.; Diaz-del Rio, F.; Morgado-Estevez, A.; Luis Sevillano-Ramos, J.; van de Molengraft, M.J.G. Towards a cloud-based automated surveillance system using wireless technologies. Multimed. Syst. 2019, 25, 535–549. [Google Scholar] [CrossRef]
- Okumuş, F.; Dönmez, E.; Kocamaz, A.F. A Cloudware Architecture for Collaboration of Multiple AGVs in Indoor Logistics: Case Study in Fabric Manufacturing Enterprises. Electronics 2020, 9, 2023. [Google Scholar] [CrossRef]
- Okumuş, F.; Kocamaz, A.F. Cloud Based Indoor Navigation for ROS-enabled Automated Guided Vehicles. In Proceedings of the 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 21–22 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Cardarelli, E.; Digani, V.; Sabattini, L.; Secchi, C.; Fantuzzi, C. Cooperative cloud robotics architecture for the coordination of multi-AGV systems in industrial warehouses. Mechatronics 2017, 45, 1–13. [Google Scholar] [CrossRef]
- Indri, M.; Lazzero, I. A new HW/SW architecture to move from AGVs towards Autonomous Mobile Robots. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1551–1554. [Google Scholar] [CrossRef]
- Yilmaz, A.; Temeltas, H. ROS Architecture for Indoor Localization of Smart-AGVs Based on SA-MCL Algorithm. In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; pp. 885–889. [Google Scholar] [CrossRef]
- Li, J.; Dong, W.; Sheng, X.; Xu, S. Visual Servoing of Micro Aerial Vehicles with the Cooperation of Ground Vehicle. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020; pp. 150–155. [Google Scholar] [CrossRef]
- Destiarti, A.; Kristalina, P.; Sudarsono, A. Mobile cooperative tracking with RSSI ranging in EKF algorithm for indoor wireless sensor network. In Proceedings of the 2016 International Conference on Knowledge Creation and Intelligent Computing (KCIC), Manado, Indonesia, 15–17 November 2017; pp. 60–66. [Google Scholar] [CrossRef]
- Yulong, D.; Bin, X.; Jie, C.; Hao, F.; Yangguang, Z.; Guanqiang, G.; Lihua, D. Path Planning of Messenger UAV in Air-ground Coordination. IFAC-PapersOnLine 2017, 50, 8045–8051. [Google Scholar] [CrossRef]
- Marzoughi, A.; Savkin, A. Autonomous navigation of a team of unmanned surface vehicles for intercepting intruders on a region boundary. Sensors 2021, 21, 297. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Savkin, A.; Li, X. Reactive autonomous navigation of UAVs for dynamic sensing coverage of mobile ground targets. Sensors 2020, 20, 3720. [Google Scholar] [CrossRef] [PubMed]
- Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D. Introduction to Autonomous Mobile Robots; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Greiff, M. Modelling and Control of the Crazyflie Quadrotor for Aggressive and Autonomous Flight by Optical Flow Driven State Estimation. Ph.D. Thesis, Department of Automatic Control, Lund University, Lund, Sweden, 2017. Student Paper. [Google Scholar]
- Luis, C.; Ny, J.L. Design of a Trajectory Tracking Controller for a Nanoquadcopter. arXiv 2016, arXiv:1608.05786. [Google Scholar]
- Hustiu, S.; Lupascu, M.; Popescu, S.; Burlacu, A.; Kloetzer, M. Stable hovering architecture for nanoquadcopter applications in indoor environments. In Proceedings of the 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 10–12 October 2018; pp. 659–663. [Google Scholar] [CrossRef]
- Budaciu, C.; Botezatu, N.; Kloetzer, M.; Burlacu, A. On the Evaluation of the Crazyflie Modular Quadcopter System. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; Volume 2019, pp. 1189–1195. [Google Scholar] [CrossRef]
- Stallings, W. Operating Systems: Internals and Design Principles, 8th ed.; Prentice Hall: Hoboken, NJ, USA, 2012. [Google Scholar]
- Dijkstra, E.W. Information streams sharing a finite buffer. Inf. Process. Lett. 1972, 1, 179–180. [Google Scholar] [CrossRef]
- Feng, L.; Borenstein, J.; Everett, H.R. Where Am I: Sensors and Methods for Mobile Robot Positioning; University of Michigan: Ann Arbor, MI, USA, 1994. [Google Scholar]
- Mueller, M.; Hamer, M.; D’Andrea, R. Fusing ultra-wideband range measurements with accelerometers and rate gyroscopes for quadrocopter state estimation. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; Volume 2015, pp. 1730–1736. [Google Scholar] [CrossRef]
- Mueller, M.; Hehn, M.; D’Andrea, R. Covariance correction step for Kalman filtering with an attitude. J. Guid. Control Dyn. 2017, 40, 2301–2306. [Google Scholar] [CrossRef]
- Smeur, E.; Chu, Q.; Croon, G.D. Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles. J. Guid. Control Dyn. 2016, 39, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525. [Google Scholar] [CrossRef]
Software (Tool) | Computer Architecture | Supported System | Comm. Devices | Infrastructure |
---|---|---|---|---|
ROS [28] | x64 ARM | GNU/Linux | Wi-Fi | Network Camera FCU |
Kafka, ROS [29] | ARM | GNU/Linux | 4G | Network VPN Cloud Service Cameras |
MAVLink [34] | ARM | Android 4.3 | Zigbee | X-bee Modules Tablet Camera |
Proposed architecture | x64… STM, EV3 | Linux… C Based | Wi-Fi | Network UWB |
Size | Anchor’s Coordinates | ||||
---|---|---|---|---|---|
m [m] | n [m] | Anchor 0 [m] | Anchor 1 [m] | Anchor 2 [m] | Anchor 3 [m] |
1.86 | 5.0 | (−0.93, −2.50, 0) | (0.93, 2.50, 0) | (−0.93, 2.50, 0) | (0.93, −2.50, 0) |
1.90 | 5.0 | (−0.95, −2.50, 0) | (0.95, 2.50, 0) | (−0.95, 2.50, 0) | (0.95, −2.50, 0) |
5.20 | 1.9 | (−2.50, −0.95, 0) | (2.50, 0.95, 0) | (−2.50, 0.95, 0) | (2.50, −0.95, 0) |
2.00 | 2.0 | (−1.00, −1.00, 0) | (1.00, 1.00, 0) | (−1.00, 1.00, 0) | (1.00, −1.00, 0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazquez-Lopez, R.; Herrera-Lozada, J.C.; Sandoval-Gutierrez, J.; von Bülow, P.; Martinez-Vazquez, D.L. Sensor Information Sharing Using a Producer-Consumer Algorithm on Small Vehicles. Sensors 2021, 21, 3022. https://doi.org/10.3390/s21093022
Vazquez-Lopez R, Herrera-Lozada JC, Sandoval-Gutierrez J, von Bülow P, Martinez-Vazquez DL. Sensor Information Sharing Using a Producer-Consumer Algorithm on Small Vehicles. Sensors. 2021; 21(9):3022. https://doi.org/10.3390/s21093022
Chicago/Turabian StyleVazquez-Lopez, Rodrigo, Juan Carlos Herrera-Lozada, Jacobo Sandoval-Gutierrez, Philipp von Bülow, and Daniel Librado Martinez-Vazquez. 2021. "Sensor Information Sharing Using a Producer-Consumer Algorithm on Small Vehicles" Sensors 21, no. 9: 3022. https://doi.org/10.3390/s21093022
APA StyleVazquez-Lopez, R., Herrera-Lozada, J. C., Sandoval-Gutierrez, J., von Bülow, P., & Martinez-Vazquez, D. L. (2021). Sensor Information Sharing Using a Producer-Consumer Algorithm on Small Vehicles. Sensors, 21(9), 3022. https://doi.org/10.3390/s21093022